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Summary

The main goal of this research was the development of a human-like
artificial arm for application in the field of humanoid robotics. Because
of its multidisciplinary nature, the research focused on many tasks. A
kinematic and dynamic model of the arm was formalized. A neurally-
inspired control, emulating the spinal cords circuits, was implemented
and tested on the model. The efficacy of a reflex module, in control-
ling the single joint position and stiffness was demonstrated, and results
compared with those of a human limb. The inverse kinematic was imple-
mented using a neural network and the module was integrated with an
high level control system based on the actual knowledge of the human
cerebellum and motor cortex. A real robotics arm was also designed and
developed, and the basic control strategies tested in real time. In com-
parison with analogous systems, the arm presents a novel three degrees
of freedom shoulder and one degree of freedom elbow actuated by seven
artificial muscles.
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Sommario

Lo scopo principale di questa ricerca é stato quello di studiare e svilup-
pare un braccio artificiale human-like, per applicazione nel campo della
Robotica Umanoide. Questo ha richiesto I'implementazione di un mod-
ello cinematico e dinamico del sistema, sul quale poi é stato testato un
controllore neurale in grado di emulare i circuiti presenti all’interno della
spina dorsale umana. E’ stata dimostrata 'efficacia del sistema di con-
trollo nel regolare la posizione e la rigidita’ di ogni singolo giunto, e i
risultati sono stati comparati con esperimenti analoghi fatti sul brac-
cio umano. La cinematica inversa é stata implementata mediante rete
neurale, e il sistema é stato poi integrato con un controllore ad alto liv-
ello basato sulle conoscenze attuali sul cervelletto e la corteccia motoria
umana. E’ stato progettato e realizzato un braccio robotico sul quale
sono state testate le strategie di controllo in real-time. Rispetto sistemi
analoghi, il braccio artificiale presenta un’innovativa spalla a tre gradi
di liberta’ e un gomito ad un grado di liberta’ attuati mediante sette
muscoli artificiali.
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1 Introduction

The goal of this study is to develop an Artificial Arm that mimics the
morphology and the functionality of a human limb. The approach that
I have adopted is in accordance with the general view of the Biorobotics
field. People involved in this Robotics branch, [5], [6], [7], [8], [9], [10]
believe that studying and mimicking a biological organism allows us to
synthesize a robot with more powerful characteristics and functionalities
than a classical robot, as well as to better understand the organism it-
self. Indeed, if we think of the history of technology, often humans were
inspired by nature. Famous are the studies conducted by Leonardo da
Vinci between 1487 and 1497 on the flying machines, that were inspired
by the birds. This does not mean that observing and studying nature we
can find out the best solution for a specific problem. In fact, for example,
our technology can synthesize flying machines that are much faster than
any biological organism.

In this first chapter I introduce the context of Humanoid Robotics as
a subfield of Biorobotics; I also point out the state of the art both in
terms of the classical and the bio-mimetic approach in controlling the
arm. Finally I explain the methodology followed in this study.

1.1 The Humanoid Robotics Field

"Humanoid Robotics" denotes a particular Biorobotics subfield.

As mentioned before, biorobotics has the main goal to create robots able
to mimic some behaviors typical of a biological organism. In Humanoid
Robotics the organism to mimic is a human being.

To create an artificial machine with human morphology and behaviors
is a very old human dream. There are some historical documents that
ascribe to Heron of Alexandria (~ 200AD), the building of some au-
tomaton puppets worked by strings, drums and weights. Also Leonardo
da Vinci in 1495, inspired by Greek books, designed a mechanical knight
able to autonomously move arms and head .

The modern Humanoid Robotics was born in Japan, where in 1973 at
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1 Introduction

the Waseda University was built the first humanoid robot, WABOT-1
(Figure 1.1). Wabot-1 was able to walk (in statical condition), manip-
ulate simple objects and communicate with a human being using the
natural language.

Figure 1.1: Wabot-1 was the first humanoid robot, builded in 1973 at
Waseda University, Japan (with permission of Prof. Shigeki
Sugano).

Although there are some example of full size humanoid robots, until

now build and study such a systems requires a big amount of time and
resources. Furthermore it is necessary effort many scientific and techni-
cal problems. Therefore many robotic groups, involved in this field, have
chose to concentrate their attention on specific sub-problems. For exam-
ple there are researches on manipulation systems, on walking stability,
on vision-manipulation coordination etc.
An important project of intelligent vision-manipulation system started
at Massachusetts Institute of Technology (Boston) in 1993. Here Rod-
ney A. Brooks and his team developed "COG" [11] an anthropomorphic
robot. The COG(Figurel.2) project has two main goals: the first is to
build a general purpose robot and the second is to better understand the
mechanism that governs the human perception.

Cog has 21 degrees of freedom (DOF) that permit it to realize move-
ments comparable with those of the human torso. Each joint is controlled

14



1.1 The Humanoid Robotics Field

Figure 1.2: The COG robot, MIT, 1993 (with permission of Prof. Rod-
ney A. Brooks)

by an independent electronic circuit that receives commands coming from
a higher level controller. The robot’s "brain" is located in a computer
network that acquires the sensorial data and plans the next action au-
tonomously.

Also the National American Space Agency (NASA) is interested in de-
veloping humanoid robots. The main idea of their Robonaut project [12]
is to build an autonomous robot able to support astronauts during the
extravehicular activities. Presently the robot is operated by a remote sta-
tion, using sophisticated tele-presence and haptic interfaces. The robot
can manipulate tools, and perform a task in collaboration with a human
being.

A beautiful example of a full size humanoid robot is "DB"; this system
was born from the collaboration between the Japan Science and Tech-
nology Corporation and the Sarcos company (Figurel.4). The robot is
approximately 1.85 meters tall, weighs 80 kg, and contains 25 linear hy-
draulic actuators and five rotary hydraulic actuators. It has 30 degrees
of freedom: seven in each arm, three in the neck, two in each eye, three
in each leg, and three in the trunk. At the moment the robot is sus-
tained by a special structure which allows the robot to remain in the
stand up position. Every DOF is equipped with a position sensor and a
force sensor except the eye’s DOF.

The principal goal pursued by the team working on this robot, is to
teach it new movements by demonstration. Indeed the robot can learn
a new motion primitive by observing a human being performing it, and
subsequently adjusting the learned movement to the task currently per-
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1 Introduction

Figure 1.3: The Robonaut humanoid robot, NASA.

formed [13]. According to this control strategy, imitation speeds up the
learning process, especially in a complex multi-dimensional motor sys-
tem, such as a humanoid robot.

Not only academic research, but also industrial research is interested
in the humanoid robotics field. A well known example is the Honda
company that right now with "Asimo" is at its fourth generation hu-
manoid robot. Honda is interested in developing humanoid robots not
only for technology prestige, but also because they are convinced that in
a near future this kind of system will have practical and useful applica-
tions. With other purposes the Sony company developed its small size
humanoid robot the "SDR-4X" only for the entertainment market.

1.1.1 Why Emulate Human Body Morphology and
Functionalities

An important question is: why emulate the human body? Many scien-
tists involved in this field are convinced that for a robot whose purpose
is to work with people, human morphology is necessary. In millions of
years the human species has adapted the environment to its needs, de-
veloping tools and things that are suitable for its morphology. So, if
we want a robot to collaborate with a human being in a unstructured
environment, it must have human shape and human-like manipulation
capabilities. It is clear that, from a technical point of view, it is not
possible, and at the same time not necessary, to reproduce in detail the

16



1.1 The Humanoid Robotics Field

Figure 1.4: The DB humanoid robot, Japan Science Technology Corpo-
ration and Sarcos company (copyrighted by the ATR/CNS
Laboratory)

human body’s functionalities and morphology. Instead what is desirable
for a futuristic humanoid robot is the same human mobility, manipula-
tion capability and adaptability. Another aspect that justifies research
in this field, as well as in the biorobotics field in general, is the utilization
of biomimetic robotic systems as a new tool to investigate cognitive and
biological questions. Collaboration between neurologists, psychologists
and roboticians can be a useful way to improve in each specific field.
Engineers can be inspired by neurological and psychological studies in
the synthesis of the artificial system, and at the same time, neurologists
and psychologists can better understand the biological system analyzing
results coming from the experimentation on the artificial system.

1.1.2 An Overview of some Humanoid Robotics Arm
Projects

Robotics since its historical origin was involved in replicating human
manipulation capabilities. In order to better understand the motivation
pushing researchers toward humanoid robotics it is useful to look at the
robot arms’ history. One of the first robots for research purpose was the
Stanford arm, designed in the Stanford Artificial Intelligence Lab. This
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1 Introduction

robot has 6 DOFs, five revolute joints and one prismatic, therefore it can
not be classified as anthropomorphic, nevertheless it was one of the first
attempt to reproduce human arm manipulation capabilities.

In the sixties General Motor (the first to apply a robot in industry) fi-

nanced a research program at MIT that developed another famous robot:
the PUMA (Programmable Universal Manipulator for assembly).
This manipulator has 6 rotational DOF’s and therefore it is classified
as anthropomorphic; we can say that this robot was clearly inspired by
biology. Indeed it is possible to compare this robot to a human arm;
we can divide the mechanical structure in three principal blocks: the
shoulder with two DOF, the elbow with 1 DOF and the wrist with an-
other three DOF. The Puma has a dexterity that is quite near to that
of a human arm, even though the human shoulder has more than two
DOF. The analogy between the human arm and the PUMA manipula-
tor is true only from a kinematic point of view, because the two systems
have completely different performances. We can assert that this robot
is more precise than the human arm, but at the same time the human
arm can exhibit a compliant behavior that is indispensable to perform
certain tasks like use a screwdriver or clean a complex surface.

It is clear that for industrial applications, a classical manipulator is
better than a human arm. For example a manipulator is stronger than
a human limb. The load for a medium size robot is about 10 Kg, but a
human being finds it difficult to move, in every position of the workspace,
such a weight. Manipulators are more precise and accurate in position-
ing the end-effector and furthermore they are free from fatigue problems
that affect the human arm during intense activities.

Nevertheless from another point of view, the human arm is superior
to robots. It is lighter and therefore it has a big force to weight ratio
(100N /20N=5) with respect to an artificial manipulator(100N/3000N=0.03).
Right now, with present technology, we are far away from the possibility
to emulate human arm efficiency and functionality. What is lacking to-
day is a system that presents the same flexibility and the same compliant
behavior as the human limb. In this context, the applicability of indus-
trial robots remains confined in the factories. Therefore, at the moment,
a lot of research in order to bring robot systems also in the household
and in the public environments is still needed.

Right now there are many research groups involved in developing hu-
manoid artificial arms; usually the simple robot structure comprises one
or two arms, a torso and a head equipped with a vision system. Because
light-weight and a compliant behavior is needed for the robot, a lot of
research was done on novel actuators able to mimic, at list from the
macroscopic point of view, the human muscle.
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1.1 The Humanoid Robotics Field

At the Center for Intelligent Systems (Vanderbilt University) Prof.
Kawamura and its group are working on the ISAC humanoid robot (Fig-
ure 1.5).

This robot consists of a human-like trunk equipped with two six-DOF
arms moved by McKibben artificial muscles [8]. The system has also a
four-DOF stereo vision head with voice recognition that permits inter-
action between the robot and humans.

Figure 1.5: Humanoid Robot Isac, Center for Intelligent System, Van-
derbilt University (with permission of Prof. K. Kawamura))

Each joint is actuated by two antagonistic actuators that are controlled
by a system able to emulate the electromyogram patterns (EMG) of a
human muscle. In particular the pressure inside the actuator is gov-
erned by a control signal analogous to the tonic and phasic activation of
the muscle; it consists in three phases (agonist-antagonist-agonist) that
permits the single joint to reach a precise position. The sensorial infor-
mation are used to correct for misperceived loading conditions and to
compensate eventually variations of the physical characteristics of the
robot’s actuators. The arm, during a fast reaching movement, can avoid
an obstacle performing a reflex behavior [14], furthermore the phasic pat-
tern is autonomously adjusted when a reach trajectory doesn’t closely
match a desired response. The main advantage of this bio-mimetic con-
trol architecture is the possibility to reduce the joint stiffness during a
movement execution; this permits at the same time to save energy and
to perform movements that are not dangerous for human beings.
Another project in the same direction is that one at the Biorobotics Lab-
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oratory in Washington University. Here Prof. Hannaford and his team
have worked intensely on the emulation of the human arm [15] [7]. The
goal of this research is to transfer knowledge from human neuro-musculo-
skeletal motion control to robotics in order to design an "anthroform"
robotic arm system(Figurel.6). They introduce the new word "anthro-
form" to describe a robotic arm in which all aspects of its design are
specified in terms of emulation of the corresponding functions of the
human arm. They tested the elastic property of the McKibben actua-
tors [16] [17] and proposed a more accurate dynamic model. In com-
parison with experiments conducted on human and animals muscle [18]
they show how this type of actuators are, actually, the best choice to
implement an anthropomorphic robot arm. Following the bio-mimetic
approach they developed also a new kind of sensor [19] [20], whose pur-
pose is to replicate a mammalian muscle spindle cell, that measures the
contraction and the muscle velocity.

Figure 1.6: "Anthroform" Arm, Biorobotics Laboratory, Washington
University (with permission of Prof. Blake Hannaford)

Since they maintain that is very hard to create a realistic model of the
human arm, they prefer to make experiments directly on the robotic arm
and subsequently compare the data with that of a human limb. They
are interested not only in the emulation of the human arm actuation
system but also in the emulation of the spinal cord reflexes to control
the artefact. Here, in comparison with the Kawamura et al. approach,
they based the control system on studies conducted by neurophysiologists
on the neural circuits delegated to generate the basic arm reflexes. In
order to build a real time controller they implemented the neural circuit
in a DSP (Digital Signal Processor) and acquired data coming from the
force and position sensor with a dedicated computer (Figure 1.7).

We can see in figure 1.7 that the test bed system takes in account
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Figure 1.7: Hannaford et al. experimental System (with permission of
Prof. Blake Hannaford)

only the elbow movements. The principal experiment conducted on this
system was the cyclic application of a noise force on the forearm and
the measurements of the joint angle deviation. This was made in many
conditions and changing the neural network parameters. After a large
amount of experiments they calculate the covariance between the more
important variables in order to better understand their correlation. This
analysis shows which are the variables and the sub-networks involved in
a certain behavior, and allows formalizing hypothesis also on the human
limb. The results show that muscle co-contraction and other circuit
parameters can regulate the joint stiffness and damping.

1.2 Classical Approaches on the Control of the
Robotics Arm

A problem to solve in order to perform a useful task with a manipula-
tor is the generation of the end-effector trajectory. Usually a start and
a goal position and orientation for the hand are assigned in cartesian
space. Using this information, it is possible to calculate, by the arm
inverse kinematic model, the joint positions. When also the hand veloc-
ity is imposed we need to take into account the direct and the inverse
dynamic model too.

Given the dynamic equations of the robot the aim for the controller is
to maintain the dynamic response between a range that a priori is fixed
in accordance with a performance criterium. Usually the solution to this
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problem is complicated by the inertia, gravity and friction forces and
also by the reaction force between the links.

It is possible to model the robot with a multi-inputs multi-outputs (MIMO)
non linear dynamic system where the internal state variables are cou-
pled. For industrial manipulators a common way that is followed in
order to control the system, is to consider each joint like an independent
servomechanism [21]. This simplification is crucial in order to use the
classical control theory. Therefore we can assume each joint is like a dy-
namic linear system (Equation 1.1) and control its position and velocity
using a proportional derivative and integrative (PID) controller. The
canonical representation for a linear dynamic system is expressed by the
following equations.

T = Ax + Bu

y=Cx+ Du (1.1)

where A,B,C and D represent the system matrixes of appropriate di-
mensions.

This solution works well only if the parameters of the system do not

change over time. If this happens the system might worse its perfor-
mance and in the worst case become instable. A common way to solve
this problem is reducing the motion speed, still maintaining the same
robot precision in positioning the end-effector. But when also this action
is inadequate, it is necessary to consider a more realistic arm dynamic
model that takes into account the coupling between the joints, and con-
sequently to synthesize a controller based on this model.
If it is necessary to generate rapid movements the system should compen-
sate the inertia and Coriolis forces and a possible load change. Another
unsolved problem is the calibration and re-calibration of the control sys-
tem [22] due to the wear of the mechanical structure of the robot; in
this condition the model assumptions may become increasingly impre-
cise during operation. This results in an imprecise and unstable behavior
of the control system and therefore adaptive methods are required.

1.3 Different approaches to the Bio-Inspired
Control of the artificial Arm

It is possible to model a compliant artificial arm with a non linear dy-
namic system, that in a general form is expressed by equation 1.2
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&= flx,u,t] x(0) ==

y:g[xau’ t] (1'2)

where f and g are suitable functions. While, for a linear system, there
exist many classical techniques in time and frequency domains, this is not
true for a non linear system. Nevertheless we can find in literature many
successful examples of systems controlled using neural network adaptive
controllers [23]. In this section I review some techniques related to the
problem of biological motor control.

1.3.1 Model Reference Adaptive Control

This control is based on the reference model M of the plant (in our case
the Arm) P and on an algorithm that modifies the feedback gain for
the joint actuators of P. In its turn the algorithm bases its output on
the error signal calculated by the difference between the output of P
and M (Figure 1.8). This technique has many advantages: it does not
require a complex dynamic model of the plant, nor the knowledge of the
environment (Arm load, frictions etc.)
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Figure 1.8: Model Reference Adaptive Control (MRAC)

As a reference model it is possible to chose between two alternatives:
a dynamic equation with certain characteristics or a neural network. If
we adopt the first choice, for each DOF it is necessary to find a time
invariant second order differential equation (Equation 1.3), where v;(t)
represents the reference model output and r;(t) the desired plant output
for the i*» DOF.

aifii(t) + bigi(t) + y(t) = ri(t) (1.3)
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With the a; and b; constants it is possible to chose the desired natural
frequency and the damping coefficient for the i** robot link.

The alternative is to use, as reference model, a neural network trained
with the input-output pairs of the plant that we want to control. Naren-
dra and Parthasarathy [24] describe a method called dynamic back-
propagation to train neural networks for indirect adaptive control. Once
the forward model performs satisfactory, control errors can be propa-
gated through the forward model to train the controller.

1.3.2 Reinforcement Learning

Reinforcement learning is learning what to do, how to map situations
to actions in order to maximize a reward signal. The control system
receives a teaching signal that evaluates how good is the current state.
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Figure 1.9: Reinforcement Learning Control Schema

Barto [25] notes that: "reinforcement learning involves a conflict be-
tween exploitation and exploration". Usually, during the execution of
a certain task, the optimal action is unknown. The system can try to
perform a randomly selected action and subsequently, from a reward or
penalty signal, learn the best control strategy. The controller output
(Figure 1.9) is a weighted sum of its inputs (Equation 1.4).

s(t) =Y wi(t)zi(t) (1.4)
=1

and produces a random output

t) 1 with probability p(t),
Qa =
0 with probability 1 — p(¢)
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with p(t) a rising function of s(t). The weights expressed in equation
1.4 are updated according to

Aw(t) = nr(t)a(t)z(t) (1.6)

where 7(t) is the reinforcement signal, n > 0 is the learning rate and
x(t) the controlled system state.
Reinforcement learning was successfully applied to a biological robot
arm [26]. The authors note that it is difficult to apply this method to
systems that are redundant (Figure 1.10) , because the cost of the trial
and error algorithm is exponential in the dimension of the search domain.
For instance, there is an infinite number of possible paths that the hand
can follow to obtain the task goal. Even though the path was determined,
it can be achieved by different sequences of muscle activations. The
authors simplify the problem by considering a subspace of the search
domain in which to apply the reinforcement learning algorithm. After
the subproblem is solved it is possible to relax the initial constraints.

01 @ Joint

<= Actuator
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Figure 1.10: Biological Robot Arm Model

The authors demonstrate by simulations, that given a goal hand po-
sition in a 2D cartesian space, the controller after 1000 trials is able to
reach the target following a straight line.

1.3.3 Memorized Motor Program and Learning by
Demonstration

The main idea of this approach is to observe and memorize a motor pro-
gram executed by a "Teacher". In order to be adapted to different tasks
the memorized motor program should be parameterized by the control
system.

In the Dynamic Brain Project (M. Kawato, S. Schaal et al) the DB
robot [27] stores an explicit representation of a movement trajectory
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in memory. When the robot needs information, for example, on how to
pitch a baseball, it finds the appropriate tape or template in memory and
then executes it. It is possible to make the system more sophisticated by
considering the combination of more tapes to produce the movement. Ac-
cording to the authors, human-like learning from demonstration (LFD)
should greatly reduce the cost of programming these complex systems.

In the human being LFD requires the mapping of a perceived action

from an external frame of reference, suitable to describe the environ-
ment, into a different internal frame of reference that is able to manage
the neurons that control the muscle activity during motion. Another im-
portant feature during the learning of a new task is the prior knowledge.
The knowledge necessary to approach this new task can be obtained
from previously learned tasks, or it can be acquired by the imitation of
a teacher [28].
A problem still open, different from the approach of Kawamura et al., is
how enable the robot to fill in missing information using learning from
practice. Indeed many things are hard or impossible to perceive in a
demonstration, such as muscle activations or responses to errors that do
not occur in the demonstration.

A different approach is that one of Gorinevsky [29]; in his system the
motor programs for training trajectories is not acquired from a human
being, but generated by an algorithm that iteratively optimizes a cri-
terion function to minimize trajectory errors. In the algorithm there is
also an estimate and memorization of the sensitivity of parameters with
respect to the final trajectory errors. The learned data can be used in a
second time to generate new motor programs.

1.3.4 Hierarchical and Modular Neural Networks

In nature, modularity, is an intensely used strategy. We can define mod-
ularity as a subdivision of a complex object into simpler objects. Usually
in humans each cognitive task can involve different brain processes si-
multaneously. Humans are able to perform certain tasks in parallel and
other only singularly. For example most people have no problems with
reading and listening music at the same time; whereas they find listening
to two different speakers at the same time very difficult. This means that
tasks which can be processed in different brain "modules" can be done
easily in parallel, whereas tasks which need the same neural "module"
are difficult to execute concurrently.

Like in the human brain it is possible to organize the artificial neural
control system in a modular fashion, where each module is expert for a
specific behavior (Figure 1.11).
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Figure 1.11: Example of Modular Neural Network

To control a robot arm Jordan et all. [30] and Gomi et all. [31] used
a modular neural network. Both papers approach the problem that the
manipulator dynamic changes during the manipulation of an object so
causing a degradation of the robot performance. Each modular control
network was trained to learn the dynamics of single objects, while the
gating network learned to recognize the manipulated object. Kawato in
his works [32], argues that the hierarchical network can be used to model
the human brain, but also as efficient robotic controller. He demon-
strated the ability of a hierarchical and parallel network in improving
the artificial arm trajectory and the force regulation [33]. In the control
system there are two module which compute the inverse dynamic of the
arm: the first compensates for noise forces and the second for Coriolis
and centrifugal forces.

1.4 My Approach and Methodology

After the introduction of some projects and methodologies relevant for
this study, in this section, I want to clarify my approach to the problem
of designing and controlling a human-like artificial arm. Before starting
this study, we had [34], [35] experience with the design an construction
of a human-like artificial hand "Blackfingers". This study was useful,
not only to familiarize us with the biology of the human hand and ner-
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vous system, but also to get involved in solving technical and scientific
problems deriving from the goal to mimic as much as possible a complex
system like the human hand.

Figure 1.12: Our first prototype of artificial hand, Blackfingers, AirLab,
Politecnico di Milano

In the first stage of this project we intensively studied, with the collab-

oration of biologists and experts in the field, the human hand anatomy
and physiology. In the second stage we were involved in the design of the
mechanical structure of the artificial hand. In particular in our design we
tried to replicate the DOF’s and the tendon structure of the human limb.
What was immediately clear, in this first experience, is that designing an
artificial system on the basis of biological information, allows engineers
to take advantages of solutions that nature has found out in millions of
years. But also, that nature can only "inspire" the designer; even if the
biological system that we want to mimic is well understood each aspects,
the problem of how to reproduce it artificially with state-of-art technolo-
gies remains unsolved. The bio-robotic engineer is therefore pushed to
reach a compromise on the base of available technologies and level of
emulation of the natural system.
Returning to this study, to design the bio-inspired artificial arm, I again
looked with enthusiasm at biology but with the consciousness that it is
necessary to find out technical and scientific solutions that sometime are
far away from the solutions adopted by nature.

The goals of this work are both scientific and technological:

e Anatomical and physiological study of the human limb in order to
find out specifications for the artificial arm
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e Implementation of a kinematical and dynamic model for the ar-
tificial arm, in particular solving the problem of a singular three
degrees of freedom (spherical) shoulder joint moved by five artificial
muscles.

e Design, realization and testing of a novel humanoid arm using a
bio-mimetic approach

e Design and experimentation of new kind of sensors and actuators
suitable for humanoid robotics applications

e Experimentation of a low and high level control systems based on
actual knowledge of the circuits located in the human spinal cords,
cerebellum and motor cortex.

e Using the simulation results on the control system in order to im-
prove the knowledge of the human limb.

e Compare results with other analogous works and also with the
human limb.

Relative to other analogous researches [36], [7], [11] [15], [19], which

focus on a particular sub-problem, this work will consider the integration
of both low and high level control systems in order to govern a humanoid
robotics arm. This considering classical and also new kind of neural net-
works based on neurophysiology studies [37], [38], [39], [40].
The thesis is organized in four principal areas: study of the human supe-
rior limb and central nervous system, kinematic and dynamic modelling
of the bio-mimetic arm, study and experimentation of a model able to
mimic the human neural circuits involved in reflexes and coordinating
movements and experimentation on the real prototype performing simple
movements. The approach I adopted to synthesize the neural controller
is based on models and studies conducted on primates by neurophysiol-
ogists and neurologists. The prototype architecture corresponds, from a
macroscopic and functional point of view, to requirements obtained from
the human arm. This allows me to reproduce some natural movements
and behaviors, as well as to make predictions on the control structure
of the human limb itself. Our arm differs from other analogous sys-
tems [36], [7], by the presence of a fully actuated 3DOF shoulder joint
and a 1DOF elbow joint. The system is moved by seven artificial mus-
cles that are equipped with novel force and contraction sensors. The
actuation system, in comparison with Cog’s robot [11], permits a more
human-like regulation of the joints stiffness. Furthermore, thanks to the
employment of light materials, the system can be easily integrated with
a whole humanoid robot.
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1.5 Organization of the Thesis

The thesis is organized in eight chapters. Chapter 2 discusses the human
arm biology and the crucial parts of the central nervous system that are
involved in arm control. Particular attention is paid to the musculature
and to the part of the control system involved in reflex behaviors. Chap-
ter 3 describes the control architecture adopted in order to control the
artificial arm. The model of each single block is formalized in mathemat-
ics, furthermore a description of how the different blocks are interfaced
is also provided. The fourth chapter proposes the arm model taking
into account kinematical and dynamical aspects. The direct kinematic
model is described using the homogeneous coordinates and a solution
for the inverse kinematic using a neural network is presented. The arm
dynamic model is formalized using the Newton-Euler theory and imple-
mented using the Matlab environment. Chapter 5 shows some results
that demonstrate how the control system can achieve reflex behaviors
comparable with those of a human limb. In Chapter 6 I report some ex-
periments that deal with the overall arm simulation in reaching a target
position, and compare with other research results. Chapter 7 reports the
description of the arm prototype and some data acquired during a single
joint movement. Finally chapter 8 brings the conclusion for this work
and proposes possible future developments.
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2 The Biological Limb

2.1 Introduction

In this chapter I review human arm biology and the crucial parts of
the central nervous system that are involved in arm control. It is not
a general study, because only the aspects needed for my purposes are
discussed. I start by studying the arm from the osteologic point of view,
with particular attention to the shoulder and elbow articulations. Fol-
lowing there is the physiological and functional presentation of the arm
musculature. I focus on the mechanical and kinematical aspects that
are involved in arm actuation. The third section of this chapter deals
with the parts of the human central nervous system that are involved
in regulating and planning arm movements. I explain the organization
of the nervous motor system, describing the neural circuit anatomy and
functionality. Particular attention is dedicated to the motor unit inside
the spinal cord, and to the structure and role of the cerebellum in coor-
dinating movements. Some material and redraw anatomical sketches are

based on text-books [41], [42], [43], [44], [45].

2.2 Arm Anatomy and Physiology

2.2.1 The Arm Skeleton and Articulations

The arm’s bones constitute the mechanical structure that support the
limb. Their role is to transmit the force and the torques, generated by
muscles, in order to support the hand and to perform a task. Starting
from the shoulder to the wrist, it is possible to distinguish five bones:
clavicle, scapula, humerus, radio and ulna (Figure 2.1). The humerus
supports the upper arm and is articulated, in the proximal position,
with the scapula and in the distal position with the radius and ulna.
The proximal articulation is an enarthrosis (spherical) and permits three
degrees of freedom, the distal articulation is trochlear (cylindrical) and
permits one degree of freedom. Radius and ulna support the forearm
and in the distal position they are articulated with the wrist’s bones.
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2 The Biological Limb

Segment m (kg) | h (cm) | r (cm) | I/y(kg.cm2) | I/z(kg.cm2)
humeral 1.81 274 4.16 121.1 15.7
forearm 1.12 27.13 2.53 70.5 3.6
hand 0.46 11.07 2.46 5.4 14
forearm-+hand | 1.58 38.25 2.36 194.87 4.41
ulnar 0.79 38.25 2.36 97.43 2.21
radial 0.79 38.25 2.36 97.44 221

Table 2.1: Physical characteristics of the human arm (Data from [4] )

In table 2.1 are reported some physical parameters of a human arm,
data are obtained by an average made on a population sample of adult
individuals.

Figure 2.1: The human upper Skeleton

The Shoulder Joint

The shoulder joint is one of the most complicated joints in the body. It
is made up of three bones: scapula, clavicle and humerus (Figure 2.1).
The joint itself is a ball-and-socket joint [46], the head of the humerus fits
into a socket in the outer edge of the scapula. The head of the humerus
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is much larger than this socket on the scapula, therefore the shoulder
articulation permits a wide range of movements. The clavicula bone
itself is not fixed but can slide on the sternum, to extend the movement
of abduction. In my model, described in chapter four, I consider only
the humerus-scapula articulation, therefore only 3 DOF are permitted.

The Elbow Joint

The elbow joint is situated where the humerus meets the bones of the
forearm, the radius and the ulna [47]. The distal part of the humerus
is shaped as two rounded surfaces, one of which is coupled with the
proximal part of the ulna (the bone that lies on the same side of the
thumb), and the other with the proximal part of the radius. When the
elbow is straight, a projection in the proximal part of the ulna (the
olecranon process) fits against a hollow in the humerus and prevents
the joint moving any further; this limits the elbow rotation in a range
of about 150°. If we consider only the humerus-ulna articulation it is
possible to model the elbow as a cylindrical joint with only one DOF.
The function of the radio is to permit the wrist twisting, however in
my model I do not consider this movement and therefore the forearm is
represented by a single link with only one DOF.

2.2.2 Arm Muscles Structure

Muscles represent the actuation system of the body [48]. In this section
I analyze only the principal muscles that co-work in order to move the
shoulder and the elbow articulation. These muscles will be inserted also
in the arm’s model and in the prototype. For the shoulder movements
I consider: pectoralis major, dorsal major, deltoid, supraspinatus and
subscapularis. For the elbow rotation I analyze: biceps and triceps.
Muscles located in the forearm actuate the wrist and hand, therefore in
this study they are not considered.

Pectoralis Major

Pectoralis Major is a big muscle that is divided in three parts (Figure
2.2): the clavicular head that originates from the medial part of the
anterior margin of clavicula, the sternocostal head that originates from
the sternal strip and from the cartilages of the 2th and 6th rib, and
finally the abdominal head that originates from the cover of the straight
muscles.

The pectoralis major has its insertion in the intertubercular groove
of humerus. This muscle has a quadrangular shape when the arm is
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Figure 2.2: Pectoralis Major, 1 clavicular head, 2 sternocostal head, 3
abdominal head

extended to the bottom and is triangular when the arm is lifted.

The mechanical function of this muscle is the flexion, the adduction and
medial rotation of the humerus. In our model this muscle has only one
"head" that is attached to the front part of the robot, and is inserted in
the proximal part of the upper arm under the shoulder joint (for more
details see chapters three and four).

Dorsal Major

This muscle is very extended and it is subdivided in many parts (Figure
2.3). The vertebral part originates from the 7th-12th thoracic vertebraes,
the iliac part originates from the spine of sacrum and posterior part of
iliac crest, the rib part from the 10th-12th ribs and finally the scapular
part from the inferior part of scapula. The muscle inserts in the bottom
part of the intertubercular groove of humerus. The actions of this muscle
are: move down and adduct the arm when it is lifted, move back and
rotate inward the arm when the arm is adducted.

In our model, again, the muscle origin from only one point that is
located behind the robot body, and is connected at the same point of
the Pectoralis insertion by a special tendon (for more details see chapters
three and seven)

Deltoid

Deltoid muscle is composed by three parts (Figure 2.4): the clavicular
part that originates from the distal part of the clavicle, the acromial part
that originates from the acromion of the scapula and the spinal part that
originates from the spine of the scapula. Each of these parts are inserted
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Figure 2.3: Dorsal Major, 1 vertebral part, 2 iliac part, 3 rib part, 4
scapular part

in the deltoid tuberosity of the humerus. Deltoid is the most important
abductor of the humerus, the abduction can reach a maximum of 90°. At
the beginning only the acromial part works, but when the abduction has
reached the two third of its maximum value also the clavicular and spinal
parts cooperate at the movement. The deltoid, opportunely activated,
can cooperate also to flex and extend the humerus.

Figure 2.4: Deltoid, 1 clavicular part , 2 acromial part, 3 spinal part

In our model the muscle is composed by only a part that originates
from a point on the shoulder joint and is inserted in the distal part of
the upper arm.
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Supraspinatus

This muscle originates from the supraspinatus fossa of the scapula (Fig-
ure 2.5), passes over the articular capsule and inserts on the superior
facet on greater tubercle of humerus. It contributes with the rotator cuff
muscles to rotate the humerus and to bind the humerus to the scapula.
Furthermore, together with deltoid, cooperates to abduct the arm.

Figure 2.5: Supraspinatus, 1 fossa of the scapula, 2 greater tubercle of
humerus

In the model this muscle origins from the opposite side relative to
the shoulder joint, in the lower position of the body. This in order to
permits a sufficient muscle contraction(this is particular true for the arm
prototype). The muscle is connected to a certain point of the shoulder
joint by a tendon; this permit to operate the shoulder rotation.

Subscapularis

Subscapularis muscle (Figure 2.6) originates from the subscapular fossa
and inserts in the lesser tubercle of humerus. It has two main functions:
the medial rotation and the adduction of the arm.

In the model the origin and insertion of this muscle are the same of
the supraspinatus muscle, but it rotate the shoulder in the opposite way
(for more detail see chapter 7).

Biceps

This muscle has two heads (Figure 2.7): the long head that originates
from supraglenoid tubercle of the scapula and the short head that orig-
inates from coracoid process of the scapula. This two heads connect
together where the deltoid inserts in the humerus. The biceps inserts
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Figure 2.6: Subscapularis, 1 subscapular fossa, 2 lesser tubercle of
humerus

with a robust tendon in the tuberosity of the radius. The muscle acts
on two articulations simultaneously: the scapula-humerus articulation
and the elbow articulation. On the scapula-humerus articulation the
long head determines the abduction and the inward rotation of the arm,
while the short head determines its adduction. On the elbow articulation
the biceps acts as a flexor and supinator. When the forearm is flexed the
supinator effect of this muscle is increased.

Figure 2.7: Biceps, 1 long head, 2 short head, 3 tuberosity of the radius

In the model this muscle origin from the proximal part of the upper
arm and is inserted in the proximal part of the forearm. So a big dif-
ference, in comparison with the natural muscle, is that this muscle does
not affects the shoulder joint; therefore is a mono-joint actuator.
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Triceps

Triceps is formed by three parts (Figure 2.8): the long head that origi-
nates from the infraglenoid tubercle of the scapula, the medial head that
originates from the posterior surface of humerus below the radial groove
and the lateral head that originates from posterior surface of humerus
above the radial groove. The three heads connect in a tendinous lamina
that inserts in the olecranon process of the ulna. The triceps acts with
the long head on two articulations (shoulder and elbow) and with the
other two heads only on the elbow articulation. In the elbow articula-
tion the biceps acts as an extensor, while in the shoulder articulation
cooperate at the adduction movement.

Figure 2.8: Triceps, 1 long head, 2 medial head, 3 lateral head, 4 olecra-
non process of the ulna

In the model this muscle has the same origin and insertion of the
biceps, but it acts in opposite way (extends the forearm).

2.2.3 Muscle Physiology

In this section I analyze the physiology of the skeletal muscle, one of the
three types of muscles present in the human body. This kind of mus-
cles are voluntary, therefore they are activated (contracted) by voluntary
commands coming from the central nervous system.

The muscle structure is made up by numerous subunits called fascicles
surrounded by connective tissue (connective tissue forms also tendons).
In its turn each fascicle is composed of numerous muscle fibers (mus-
cle cells) and finally each fiber is made up of many myofibrils. The
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membrane of the muscle cell called sarcolemma, is comparable with the
membrane of a normal neuron, therefore it has a certain potential.

The muscle commands arrive in form of action potentials that originate
from motoneurons located in the spinal cord. The impulse crosses the
motoneuron’s axon and reaches the junction formed by end of the axon
and the muscle. This junction works like a synapse in the central ner-
vous system; when the electrical impulse arrives, a chemical transmitter
is released and diffuses across the neuromuscular clef. The transmit-
ter molecules fill receptor sites and therefore increment the membrane
permeability to sodium. When sodium diffuses in the membrane, its
potential become less negative (depolarized) and when a threshold is
reached an action potential occurs. At this point the action potential
propagates along the muscle cell membrane, and causes its contraction.

Myofibrils are made up by two myofilaments: thick and thin (Figure
2.9). These are organized in a very regular pattern, each thick my-
ofilament being surrounded by six thin myofilaments. These myofibril
subunits are called sarcomeres.

Thin Filaments

Released

Thick Filaments

Contracted

Figure 2.9: Sarcomere Model

Thick myofilaments are composed of a protein called myosin; when the
electric impulse travels along the Sarcoplasmic Reticulum some chemi-
cal processes happen. From a rough point of view we summarize the
process in these steps: the myosin head creates a fixed connection with
actin molecule (that lies on the thin filament), then myosin swivels and
therefore the entire myofilament moves forward. Combination of many
myosin actions causes the sarcomere and therefore the muscle contrac-
tion.

From a macroscopic view, it is possible to model the muscle in two main
components [49], [50]: the contractile element and the viscose-elastic
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element (Figure 2.10).

Contractile
Component
Paralle] viscose-elastic
Component
Senial viscose-elastic
Component
Muscle
Load

Figure 2.10: Macroscopic muscle model

The viscose-elastic element (due to the connective tissue) is located in
series and parallel to the contractile element (due to the myofibrils). The
presence of the viscose-elastic element introduces a phase displacement
between the sarcomeres and the muscle contraction. This action permits
the more gradual increase and decrease of the tension generated by the
muscle on the articulation.

Isotonic/Isometric Contraction and Stimulus summation

The muscle is isotonically contracted when its force is greater than the
force imposed by the load. It is isometrically contracted when the load
force overcomes the force generated by the muscle. During a isometrical
contraction the muscle fibers are activated but instead of contracting or
releasing they maintain a constant length.

Another important characteristic of the skeletal muscles is the ability to
contract to varying degrees; the degree of contraction depends on the
number of motor units being stimulated (the motor unit is composed by
a motoneuron and all the muscle fibers it innervates). Skeletal muscles
are made up by numerous motor units and, therefore, stimulating more
motor units causes a stronger contraction.

The strength of contraction depends on the frequency of muscle stimula-
tion; the higher the frequency and the more the strength of contraction
is increased. With rapid stimulation, a muscle fiber is stimulated while
there is still some contractile activity, resulting in a summation of the
contractile force.

40



2.2 Arm Anatomy and Physiology

Dependence of the velocity and force of contraction on the muscle
length

The velocity of the muscle contraction depends on the load attached to
the muscle. Experimentally was found [1], [51] (Figure 2.11) that the
velocity of contraction reaches its maximum value when the load force
is null, while it decreases with the increasing of the load. The maximum
velocity of contraction depends also on the muscle characteristics; in-
deed there are muscles (for example the muscles that control the eyelids
opening and closure) that are weakens than others, but can contract very
rapidly (100ms).
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Figure 2.11: Relation between the muscle velocity and muscle load (from
Hill (1938) [1] )

Studies of muscle force, under isotonic conditions, have shown a bell-
shaped curve (Figure 2.12) between force and muscle length. Observing
the curve it is possible to see that the tension assumes the minimum
value at the two extremes and reaches the maximum value in between.
This phenomenon fits well with the sliding filament theory of muscle
contraction; according to the theory, when the overlap between the actin
and myosin filaments is increased more cross-bridges can be formed, and
this causes an increasing of muscle force.

Because of I am interested in developing an artificial arm, in the model
I do not considered the physiology of the natural muscle. Nevertheless
the study of the natural muscle is useful to obtain some directions in the
choice of the proper actuators, like the force that it can develop and its
dynamic response. In chapter four I will analyze the static model for a
special actuator, the McKibben artificial muscle. In chapter seven I will
present some testings on this type of device.
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Figure 2.12: Relation between the muscle tension and muscle length
(from Hill (1938) [1] )

2.3 Basis of the Motor System

In this section I analyze the organization and the neurophysiology of the
parts of the central nervous system involved in the arm motor functional-
ities. Because they are not so relevant for my study, I skip the molecular
and chemical aspects of this complex system. This section involves neu-
roscience field, therefore to avoid erroneous terminology, sometimes I
report the same sentences of the author.

2.3.1 Biology of the Neuron

The neuron is the fundamental brick that composes the human nervous
system. It is a cell and its key parts are: the cell body, the dendrites, the
axon and the synaptic terminal of the axon (Figure 2.13). The neuron
can receive input from other similar cells and transmits information via
electrical signals that are called action potentials. The axon structure
is specialized to transmit information over long distance. Presynaptic
terminals permit communication with other cells through the release of
specialized molecules, the neurotransmitters.

In order to transmit information, the axon of a neuron can form
synapses with dendrites or cell bodies of other neurons. When an action
potential occurs in the presynaptic site, neurotransmitters are released
and consequently diffuse across the synaptic cleft. These neurotransmit-
ters, in the postsynaptic cell, interact with receptors (particular organs
that can establish a chemical connection with the neurotransmitters).
The principal effect of a neurotransmitter on its target cell is to change
its membrane potential. Depending on the electrical response that neu-
rotransmitters cause on the target cell, they are classified as excitatory
or inhibitory.
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Figure 2.13: Diagram of the structural part of a pyramidal neuron in the
cerebral cortex

Neuron inputs are summed and "integrated" over time, setting the
level of the membrane depolarization and therefore the neuron’s firing
rate. When the membrane is not stimulated it is polarized at about -70
mV, this potential is called resting membrane potential. The membrane
polarization is due to unequal distribution of Nat and K™ ions on the
two sides of a nerve cell membrane. An action potential is a very rapid
change in membrane potential that occurs when the membrane potential
overcomes a certain voltage. In particular, the membrane potential goes
from the resting potential to some positive value (about +30 mV) in a
very short period of time (Figure 2.14).
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Figure 2.14: Action potential in a neuron

Spatial and Temporal Summation

Usually in the central nervous system (CNS) the stimulation of a single
synapse is not powerful enough to depolarize the postsynaptic neuron
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and therefore to generate an action potential [52]. Instead, each time a
synapse is stimulated , it produces a small depolarization (excitatory)
or hyperpolarization (inhibitory); this signal then sums with the sig-
nals generated by other synapses. There are two basic processes that
involve the summation process (integration): the temporal summation
and the spatial summation. According to [52] temporal summation: "is
the process through which two input signals that occur sequentially can
summate to produce a larger depolarization of the neuron membrane".
Spatial summation: "is the process though which the signals generated
by different inputs can summate".

Synaptic currents are generated by the opening of the ion channels.
When the channel opens the membrane potential shifts to reach an equi-
librium potential, characteristic of the ion to which the channel is per-
meable.

At this point even if other ion channels open they will not influence
the membrane potential. For this reason, during an action potential, a
second stimulus, near to the first one, will not produce a second action
potential (Figure 2.15).
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Figure 2.15: Non Linear Summation of the neuron (arrows represent the
stimulus)

In chapter three I will present a realistic model for the natural neuron,
that preserves its membrane dynamical behavior.

2.3.2 Anatomical Organization of the Motor System

The human motor system is hierarchically organized in the sense that
higher level circuits control lower level circuits. Nevertheless there are
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also many local circuits that influence sensory motor integration.
This complex system comprises:

e motor neurons in the spinal cord and cranial nerve nuclei in the
brain stem that directly innervate striate muscle

e segmental circuitry that controls motor neurons

e structures in the brainstem, midbrain, and motor cerebral cortex
that provide descending pathway input to the motor neurons

2.3.3 Descending Pathway of the Motor system

Muscle are innervated by motoneurons, that have their cell bodies in the
ventral horn of the spinal cord and cranial nerve nuclei in the brainstem.
These neurons send their axon to the muscles via the ventral roots (to-
ward the belly) and cranial nerves.

There are two types of motoneurons:

alpha motoneurons which regulate the muscle contraction;

gamma motoneurons which regulate the contraction of the intrafusal
muscle fibers, an internal organ of the muscle spindle;

It is necessary to make another motoneurons distinction:

lower motoneuron neuron that directly innervate the muscles;

upper motoneurons neurons that provide descending inputs to the lower
motoneurons; these neurons are located in the motor cortex and
brainstem.

Each individual muscle fiber receives input from one and only one mo-
tor axon, but a single motoneuron can innervate a group of muscle fibers.
It is possible to define as a motor unit the set composed by an individ-
ual motoneuron and all the muscle fibers that it contacts. Motoneurons
within the spinal segment are organized according to the muscle groups
that they innervate. We can distinguish two main rules:

Proximal-distal rule motoneurons innervating proximal musculature are
located medially in the ventral horn; motoneurons innervating dis-
tal musculature are located laterally.

Flexor-extensor rule motoneurons innervating extensor muscles lie ven-
tral (anterior) to those innervating flexors.
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Motoneurons in the spinal cord receive direct input from: descend-
ing pathway interneurons within the spinal segment, sensory afferents,
and interneurons in near segments. The descending pathway terminates
directly on the motoneurons and the interneurons. These pathways orig-
inate from the cerebral cortex (corticofugal pathways)and the brainstem
pathway (brainstem pathways).

Corticofugal Pathway

In its turn the corticofugal pathway divides in:

1. Corticospinal tract (CST) which projects to motoneurons in the
spinal cords

2. Corticobulbar tract which project to motoneurons in the medulla,
pons, and midbrain

There are also other important projections to nuclei in the midbrain
and brainstem that in turn give rise to the descending pathway:

1. Corticorubral tract which projects to the red nucleus

2. Corticoreticular fibers which project to the part of the reticular
formation that gives rise to medial brainstem pathway

The CST is formed by the axons of the large pyramidal neurons of the
primary motor cortex (Brodmann’s area 4) and also from the axons of
pyramidal neurons in Brodmann’s areas 1, 2 and 3 of the somatosensory
cortex. The CST system is divided into lateral and medial components.
The fibers of lateral CST innervate motoneurons that stimulate distal
muscles and flexors. The fibers of medial CST stimulate motoneurons
and interneurons in the medial and ventral portion of the ventral horn
where are located motoneurons that supply proximal and extensor mus-
cles.

The corticobulbar tract is, from the functionality point of view, similar
to the CST. These pathways contact the lower motor neurons in cranial
nerve nuclei, and therefore they control muscles of the head and face.

Brainstem Pathway

There are medial and lateral brainstem pathways. Medial brainstem
pathways originate from the vestibular nuclei and terminate on interneu-
rons and motoneurons that innervate axial musculature. These are im-
portant for controlling musculature that maintains balance and posture.
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The lateral brainstem pathway (rubrospinal tract) originates from the
red nucleus and projects to the spinal cord via the lateral column. These
circuits receive input from motor cortex and also from the cerebellum.

2.3.4 Proprioceptors

Proprioceptive information is very important for motor control. These
information is required for initiating a movement: starting position of
the limb (joint receptors), load of the muscles(stretch receptors), and
feedback about the trend of the movement. In this section we analyze
only two types of receptors that are important to acquire information
about the muscle state: muscle spindles and Golgi tendon organs.

Muscle Spindles

Muscle spindles (Figure 2.16) are organs located inside the muscle. Each
organ is surrounded by 10 to 12 very small muscle fibers (intrafusal
muscles) that in turn are covered by a sheath of connective tissue. Inside
this "sheets" there is the end of a sensory nerve that functions as a stretch
receptor (Ia fiber). The sensitivity of the stretch receptor depends on
the tension of the intrafusal muscle fibers which are regulated by the
gamma motoneurons.

There are two types of stretch receptors: the primary spindles and the
secondary spindles. The primary spindles provide dynamic and static
information about the muscle stretch. These kind of receptors are rapidly
adapting sensorial organs, therefore if the stretch stimulus continues the
rate of firing decreases. Instead the firing rate of secondary spindles
depends only on the amount of stretch applied. They are slow adapting
receptors: when a stretch is applied the firing rate increases and remains
high for the entire period of stretch application. We can assert that
the muscle spindles, because of they are connected in parallel with the
muscle’s fibers, measure the muscle contraction (primary spindles) and
the velocity of contraction (secondary spindles). In our arm prototype
the behavior of this kind of receptors is performed by a flexible sensor
fixed with the external shell of the actuator (for more detail see chapter
seven).

Golgi Tendon Organs

Golgi tendon organs are located at the junction between the muscle fibers
and the tendon. These receptors are in series with the muscle (whereas
muscle spindles are in parallel) and sense the amount of tension in the
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muscle (Force sensors). Golgi tendon organs are innervated by Ib afferent
fiber that transports tension information to the spinal cords.

1b afferent
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Figure 2.16: Muscle Spindle and Golgi Tendon Organs

In the arm prototype this kind of receptors are substituted by force
sensor that are connected between the actuator and its point of insertion.

2.3.5 Segmental Reflexes

The sensor information coming from the muscle receptors regulates the
spinal reflexes (called also segmental reflexes). Reflexes are involuntary
and have afferent and efferent components. The efferent component is
the output of the motoneurons, and the afferent component is the input
from the muscle and pain receptors.

We can distinguish three types of segmental reflexes: the myotatic reflex
(or stretch reflex), the inverse myotatic reflex (or Golgi tendon organ
reflex) and the flexion-withdrawal reflex.

Myotatic Reflex

Ia afferent fibers (from primary spindles) form excitatory synaptic con-
nections with the alpha motoneurons that innervate the same muscle
(Figure 2.17). The Ia afferents innervate also inhibitory interneurons
whose axons go to motoneurons that stimulate the antagonist muscle. If
the muscle is stretched Ia afferents are activated and this increase the
firing rate of the corresponding motoneuron that produces inhibition of
motoneurons supplying antagonist muscles.

The myotatic reflex has an important role in regulating normal muscle
tone. Gamma motoneurons control intrafusal muscle fibers; contraction
of these increases the sensitivity of the stretch receptors. This is trans-
duced into a stronger response of the Ia afferent fibers to a muscle stretch.
Gamma activity is controlled by descending pathways, therefore superior
neural centers can regulate muscle tone, and therefore the articulation
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Figure 2.17: The Myotatic Reflex Circuit

stiffness.

Thanks to the mechanism that increases the contraction of agonist mus-
cle and release of antagonist muscle, the myotatic reflex can compensate
also for external forces that could alter the joint position.

Inverse Myotatic Reflex

When the muscle is stretched, the tension on the Golgi tendon organ
increases, and this will increase the firing of the Ib afferent fiber. Ib
afferent fibers innervate interneurons in the spinal cord that inhibit the
synergic muscles (Figure 2.18) and excite the motoneuron that controls
the antagonist muscles. Therefore when this reflex acts the synergic
muscle is released and the antagonist muscle is contracted. This reflex is
useful to avoid damage to muscle and tendon when they are overloaded,
therefore it has a safety function.

Flexion-Withdrawal Reflex

The function of the flexion-withdrawal reflex (Figure 2.19) is to rapidly
withdrawn the limb from a painful stimulus (therefore it has a safety

49



2 The Biological Limb

Spinal Cord Segment

Figure 2.18: The Inverse Myotatic Reflex Circuit

function). The reflex starts from fibers coming from cutaneous pain re-
ceptors; these in turn project to the spinal cord and create synapses
with interneurons that control activities of motoneurons. If a painful
stimulus occurs the pain receptors activate the flexor motoneurons that
govern the limb affected by the painful stimulation and this will cause
the flexion of the limb. If the painful stimulus is strong there is also
a polysynaptic activation of extensor motoneurons on the contralateral
side of the body. This is also called crossed extensor reflex; for the up-
per limb this reflex will cause a pushing response that brings the body
away from the cause that produces the pain. Unlike the myotatic reflex
the flexion-withdrawal reflex can be suppressed by voluntary command.
Probably, the reflex inhibition is possible thanks to descending pathway
that inactivate interneurons that block transmission along the polysy-
naptic circuits.
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Figure 2.19: The Flexion-withdrawal Reflex

2.3.6 Supraspinal Control of Movement

The functions that require coordination such as voluntary motor activ-
ities, postural control, and locomotion depend on higher levels of the
nervous system.

Postural Control

Postural control and balance depend on circuits whose function is to
regulate muscles that compensate for the gravity force. The principal
muscles involved in this control are those of the trunk and the extensor
muscles of the limb.

Important components of this circuitry include the reticulospinal and
vestibulospinal tracts [53], regulated by descending inputs from the cere-
bral cortex and cerebellum. Descending input from the reticulospinal
tract activates gamma motoneurons that increase the sensitivity of the
muscle spindle and therefore the tonic activation of the extensor muscles.
The activity of the reticulospinal pathway is controlled by input com-
ing from the cerebellum, the cerebral cortex and from ascending so-
matosensory pathway. "The input of cerebral cortex is important for
postural adjustment in anticipation and during the execution of volun-
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tary movements" [52]. For example, any voluntary movement of the
limb must be accompanied by postural adjustments to maintain body
balance. The other medial brainstem pathway that regulates posture is
the vestibulospinal tract. It acts, with the reticulospinal tract, to govern
the extensor musculature. The vestibulospinal tract output regulates
the activities of gamma and also alpha motoneurons. This means that
the vestibulospinal pathway can operate both via the gamma loop or
by directly controlling the alpha motoneurons activity. The principal
inputs to the vestibulospinal pathway are from the vestibular labyrinth,
projections from the cerebellar cortex and the deep cerebellar nuclei. In
particular projections from the cerebellar cortex are inhibitory. Dam-
age to the cerebellar cortex causes a disinhibition of the neurons that
project to the vestibular nuclei. Vestibular neurons in turn project to
alpha motoneurons, where they form excitatory synapses. Therefore, the
increase in activity of vestibular neurons causes an activation of the alpha
motoneuron serving the extensor muscles (the muscles are permanently
hyper-extended).

Locomotion

Locomotion depends on spinal circuits that produce stepping and walk-
ing movements. Spinal pattern generators are local circuits that can op-
erate autonomously, nevertheless their activity is regulated by descend-
ing pathways and sensory inputs. Important evidence for this came from
experimental studies conducted on animals that demonstrated that the
stimulation of an area located in the mesencephalon produced stepping,
and that the rate of stepping depended on the intensity of stimulation.

Voluntary motor activities

During the execution of a voluntary movement usually there is an in-
teraction between the organism and its environment. To perform the
movement the organism requires knowledge of the environment, knowl-
edge about the position of its body with respect to elements in the en-
vironment, and the planning of the motor action in order to efficiently
achieve the objective. The information to perform voluntary movements
is integrated together by means of the cerebral cortex. Different parts of
the cortex are involved in voluntary movements: the primary motor cor-
tex is responsible for controlling segmental circuitry, the premotor cortex
and supplementary motor areas are involved in planning the motor strat-
egy, the posterior parietal corter integrates spatial information for the
planning of the motor activity.
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I do not study in depth these parts of the brain, instead I can concentrate
on the role of another important organ of the brain involved in motor
functions, the cerebellum.

2.3.7 Role of the Cerebellum in Motor Functions

According to many neuroscientists [54], [55], [56], the overall function of
the cerebellum is that it operates as a comparator. It compares data
coming from the output of motor centers (intended movement) and sen-
sory information about the actual results (actual movement). After this
comparison the cerebellum projects its outputs to the nuclei in the brain-
stem. Nuclei output, in turn, gives rise to descending pathway to the
spinal cord and to nuclei in the thalamus [57], that controls the activity
in the motor cortex.

The cerebellum is thought to be very important for complex movements
involving multiple joints, especially for tasks that require fine dexterity.
Another function of the cerebellum is as a motor predictor in fast reach-
ing movement. Furthermore, physiological studies, have suggested that
the lateral cerebellum plays a key role in triggering the final output of
the primary motor cortex. For this reason lesions of the cerebellum are
thought to introduce delay in initiating a movement.

The cerebellum [41] is made up of a cortez and a core that contains a
series of nuclear groups called the deep cerebellar nuclei. The cerebellar
cortex contain five types of neurons (Figure 2.20): Purkinje cells, gran-
ule cells, Golgi cells, stellate cells, and basket cells. Purkinje cells form
the output pathway of the cerebellum, while the other cells types project
within the cerebellar cortex and control the activity of the Purkinje cells.
In particular granule cells form excitatory synapses with Purkinje cells,
whereas Stellate cells, Golgi cells, and basket cells are interneurons that
give rise to inhibitory synapses.

Purkinje Cells Inputs

The principal inputs for the Purkinje cells come from granule cells. The
granule cell’s axon goes to the molecular layer, then bifurcates and forms
a fiber; all these fibers run parallel one to each other, and therefore this
particular cerebellum structure is called parallel fibers. It is estimated
that each Purkinje cell receives up to 200.000 parallel fiber synapses. The
activity of one synaptic connection is not able to depolarize the purkinje
cell membrane, therefore to initiate an action potential considerable sig-
nal summation must occur.

The other excitatory synaptic input to Purkinje cells is the climbing fibers
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Figure 2.20: Cellular Organization of the Cerebellar Cortex

input, which originates from the inferior olivary nucleus. In adult indi-
viduals, each Purkinje cell is innervated by one and only one climbing
fiber. However, a single climbing fiber can innervate up to 10 Purkinje
cells. It is known that each action potential in a climbing fiber power-
fully activates the Purkinje cell.

Stellate and basket cells are innervated by parallel fibers and their axon
inhibit Purkinje cells. In particular the axon from stellate cells termi-
nates on Purkinje cell dendrites, while the axon from basket cells termi-
nates on Purkinje soma.

Golgi cells are also inhibitory interneurons; the axon from Golgi cells
inhibits the granule cells.

Cerebellum Input and Output Pathway

The cerebellar input and output pathway enters and leaves the cerebel-
lum via the cerebellar peduncles. The inputs are:

Spinocerebellar pathway , carrying proprioceptive information, which
enters the cerebellum via the inferior peduncles

Vestibular pathway , constituted by the axons coming from the vestibu-
lar nucleus and vestibular labyrinth, these also arriving via the
inferior cerebellar peduncle

Pontocerebellar , transporting information relative to the output of
neurons located in the pontine nuclei, which in turn receives in-
put from corticopontine pathway.

o4



2.3 Basis of the Motor System

Olivocerebellar pathway , originated from neurons in the inferior oli-
vary nucleus and entering the cerebellum via the inferior cerebellar
peduncle

The input pathway of the cerebellum is composed of two types of
fibers: the mossy fibers that terminate in the granule cells, and the
climbing fibers that climb along dendrites of Purkinje cells. In particular
each mossy fiber innervates several granule cells, and each granule cell
receives input from several mossy fibers.

The axon of the Purkinje cells constitutes the output of the cerebellum.
Most of these fibers go to inhibit the activity of neurons in the deep
cerebellar nuclei.
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3 The Bio-mimetic Control
Architecture

3.1 Introduction

In this chapter I explain the architecture of the control system for the
artificial arm. I start with a brief introduction of the arm prototype, in
order to better understand the motivations that conduct me to the actual
control structure. In Section 3 I describe the control system organization,
with particular attention to the integration between the modules. The
fourth Section explains the model for the neural circuits that are involved
in the emulation of the spinal reflexes. Section 5 describes the module
responsible in generating the muscle trajectory in order to move the
artificial muscle from the initial length to the target length. Finally the
last section proposes a possible model of the artificial cerebellum, whose
purpose is to learn how to compensate for joints dynamic influence during
fast movements.

3.2 Prototype Overview

In this section I introduce the arm prototype in order to better under-
stand and justify the bio-inspired control architecture I adopted. A more
detailed description is presented in chapter 7 where I show also some ini-
tial experimental results.

The arm we built in our laboratory (Figure 3.1), is intended to be the
natural test-bed for testing the control system architecture proposed in
this work and for developing new technologies applicable to humanoid
robotics. The arm, without considering the wrist and hand that are still
under development, has two joints for a total of four degrees of freedom.
The shoulder consists in a spherical joint with 3 DOF, and the elbow is
a rotational joint with 1 DOF. Joints are moved by tendons connected
with McKibben artificial muscles, which in turn are bonded with the sup-
port structure and the upper arm. Each muscle is equipped with a force
sensor mounted in series to the actuator (comparable, from a functional
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3 The Bio-mimetic Control Architecture

point of view, with the Golgi tendon organ in the human arm ) and of
a position sensor located in parallel to the external shell that covers the
artificial muscle (comparable, from a functional point of view, with the
muscle spindle in the human arm). The elbow joint has also an angular
sensor that measures the joint position and velocity with more precision.
Sensor signals are conditioned and gathered by dedicated boards and
sent to a PC A/D card. The control system runs in real time on a target
PC, and its output are converted in appropriate signals that feed the
actuation system.

Figure 3.1: The Arm Prototype, MaximumOne, Artificial Intelligence
and Robotics Laboratory, Politecnico di Milano

As it is possible to see in the prototype picture (Figure 3.1), this
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3.2 Prototype Overview

arm has an anthropomorphic design. In particular, during the design,
I have tried to reproduce the human arm dimensions and proportions,
the articulation mobilities, the muscle structure, and the same sensorial
capabilities. The actuation system is composed of seven muscles (Figure
3.2): five actuate the shoulder joint and two the elbow. This permits
me to fully actuate the joints but at the same time to have a mini-
mal architecture. The five shoulder actuators emulate the function of:
pectoralis major, dorsal major, deltoid, supraspinatus and subscapularis
muscles. The two elbow actuators emulate the function of biceps and
triceps muscles.

P T s g [y T R
Eas v v . . u v

Figure 3.2: Artificial Muscles Configuration

In comparison with the human arm musculature, the actuation system
of our prototype is quite different, for example the biceps and triceps ar-
tificial muscles are mono-articular in the sense that they are dedicated
only for the elbow actuation. Shoulder actuators are placed in order to
use the maximum length excursion. In order to conduct intensive experi-
mentation, I have also implemented a realistic model of the prototype (for
more details see chapter four) that catches the principal kinematic and
dynamic characteristics of the real arm such as: links mass and inertia,
joints mobility and friction, actuator dimension and statical response.
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3 The Bio-mimetic Control Architecture

3.3 Entire Control System Architecture and
Modules Integration

The control system of the arm is organized in a modular and hierar-
chical fashion. At the bottom level (Figure 3.3) there are the artificial
reflex modules that govern the actuator’s contraction and force. These
modules receive inputs from the joint path generator, which in turn is
fed by the inverse kinematic module that computes the target actua-
tors lengths. The reflex modules also receive inputs from the cerebellar
module whose function is to regulate the path generator outputs. The
cerebellum module, as inputs, receives signals from the path generator
modules and the error signals from the reflex modules. The inputs of
the entire control system are: the final hand position in the cartesian
space, the GO signal that scale the speed of movement and the P signal
that scales the level of artificial muscles co-activation (simultaneously
activation of the muscle that govern the same joint ).
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Sensory Information
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Figure 3.3: Control System Architecture

From a hierarchical point of view, we can distinguish three principal
levels:

High level controller :composed of the Inverse Kinematic and the cere-
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3.4 The Reflexes Control Modules

bellum modules that cooperate in parallel to control the path gen-
erator activity

Medium level controller :composed of the path generator module

Low level controller :composed of the reflex modules that control the
artificial muscles activities

The signals transmitted from one module to another are expressed in
a vectorial form, where each vector component corresponds to one of the
seven artificial muscles that compose the actuation system. Therefore
L represents the target lengths vector for the actuators, V represents
the target velocity vector for the actuators, F represents the length
vector error of the actuators, Cyg is the signal vector generated by the
cerebellum module, and P is the stiffness command vector. At the level
of each single module these signals are decomposed in their components
and sent to the appropriate submodules.

3.4 The Reflexes Control Modules

Reflex behaviors are accomplished by two modules that implement a sim-
plified model of the natural circuits present in the human spinal cord.
With respect to other models in literature [58], [59], [60], [61], or to
hardware solutions [62] I decided to neglect the spike behavior of the
neuron for all the artificial cells, instead I concentrated my attention on
modelling its membrane potential. From an information point of view
the spiking behavior in the neuron is not so crucial. In a living organ-
ism the action potential mechanism permits to convert an information,
represented by the neuron potential (analog signal), into an impulsive
signals. In such a manner the information is transmitted modulating the
frequency of the impulsive signal. This is particulary useful when the
signal (of few mV) is transmitted over a long distance, for example from
the arm receptors (peripheral nervous system) to the central nervous
system. In our system (arm prototype) the entity of the sensor signals
are in the order of some volts, and all the information are processed in
a normal CPU, so it is not efficient convert the analog signals into a
impulsive signals.

One module is dedicated to the control of the artificial muscles activities
that govern the shoulder joint, the other takes under control muscles that
actuate the elbow joint. Since the artificial muscle is constituted by only
one functional fiber the biological organization of the natural muscle in
motor units is neglected in my model. The artificial muscle activity is
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3 The Bio-mimetic Control Architecture

therefore regulated by only one motoneuron. The same consideration
can be done also for the sensorial system in the muscle, that in this case
is constituted by only one artificial spindle organ and only one artificial
Golgi tendon organ.

3.4.1 Elbow Module Architecture

The reflex module that governs the elbow muscle is represented in figure
3.4. It implements an opponent force controller whose purposes are to
attempt to implement the path generator module commands, measure
movements error and return error signals when the execution is different
from the desired movement.

In figure 3.4 Mg and M7 are the motoneurons that control the contraction
rate and force of the triceps and biceps actuators respectively. 1,6 and
1,7 are the interneurons that receive the error signals from the artificial
spindles and project, with inhibitory synapses, to the motoneurons of
the antagonist muscles My and Mg respectively. Rg and R; represent
the Renshaw cells that receive the error signals from spindles and inhibit
the corresponding motoneuron and I, cell, they are important to reduce
oscillations of the joint around the target angular position. I,6 and
I,7 are interneurons that receive the signals coming from the artificial
Golgi tendon organs (that in this system are represented by a normalized
force measurements). I,.6 and I,.7 are interneurons whose purpose is
to integrate information coming from the cerebellum (signals Cs6 and
Cs7) and from the I,,s6 and I,,s7 interneurons, thanks to these cells the
cerebellum module can apply its influence on the overall joint movement.
1,56 and I,,57 are the interneurons that integrate information of stiffness
and target length commands.

Finally M6 and M7 represent the artificial muscle spindle receptors.
As inputs they receive the muscle velocity command, the muscle target
length command and the actual muscle length and in turn excite the
corresponding motoneuron and I, interneurons.

3.4.2 Shoulder Module Architecture

The reflex module for the shoulder acts on five muscles, therefore the
neural circuit is more complex. Since as we know, there are not precise
neurophysiology studies that show how this circuit works in governing
the shoulder musculature, I design the system making some biological
hypotheses and technical speculations.

At first it is possible to make a substantial simplification by considering
the muscles action on the upper arm. We can divide the five muscles in
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Figure 3.4: Architecture of the Elbow Reflex Module
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two groups: the supraspinatus and subscapularis that work together in
order to rotate the shoulder (as rotation I intend the rotation around an
axis longitudinal to the upper arm link) , and the pectoralis major, dor-
sal major and deltoid that co-operate to flex-extend and adduct-abduct
the upper arm. This subdivision takes in account the synergy between
the muscles.

The assumption that I make, is that the mechanical action of these two
groups is separated. This means that the rotation of the upper arm
does not influence the muscles that govern the adduction-abduction and
flexion-extension movements and, in the same way, that any activity of
the muscles of the second group cannot influence the muscles that rotate
the shoulder. This assumption, confirmed also by experiments conducted
on the prototype, has a substantial consequence on the architecture of
the reflex module that will govern the artificial muscles of the shoulder.
Because of these considerations, we can divide the module in two sub-
modules: one that controls the activity of supraspinatus and subscapu-
laris actuators, and one that controls the contraction of the other three
artificial muscles. The first circuit is identical to the one presented in the
prior section, indeed it has to govern two antagonist actuators like the
triceps and biceps. More complicated is the circuit that governs the pec-
toralis, dorsal and deltoid actuators, because the actions of these three
muscles are coupled. From a system point of view, we can say that the
position of the shoulder, specified by two coordinates (for example the
Euler coordinates), depends on the three actuator positions.

[g] =f ?L’i (3.1)

Ls

Where fis a function that I will analyze in the next chapter. Moment
by moment the three muscles can be divided in the agonist and antag-
onist groups. For example when we want to extend the arm the deltoid
will be contracted and the dorsal and pectoral actuators released.

If we want extend and adduct the arm at the same time, the pectoralis
and deltoid must be contracted while the dorsal is released. The con-
traction grade of these muscles should be regulated by a second reflex
module(Figure 3.4). As it is possible to see, the circuit is an expansion
of the architecture presented to control only two antagonistic muscles.
Here we have three motoneurons that feed the corresponding muscles,
and the number of interneurons is increased. In particular for the 1,7, R;
and Ip¢ interneurons the circuit changes in the sense that now each sin-
gle interneuron inhibits the two interneurons of the antagonistic muscles.
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This rule is true only for the interneurons of the same type. Furthermore
the I,i interneurons also inhibit the motoneurons of the corresponding
antagonist muscles.

3.4.3 Motoneuron and Interneuron Models

In this section I describe the mathematical model for the neurons and the
sensorial cells present in the reflex modules. Each neuron is represented
by a first order differential equation where the variable is the neuron
potential. The potential can change between a minimum and a maximum
value, corresponding to the real numbers zero and one. The neuron
potential, in turn, is a continuous function of the time and of the neuron’s
inputs. The output of the neuron is a function of the neuron potential.
In my models this is a threshold function. The first model I describe,
the motoneuron model, is a general model and can represent quite all
the neurons in the circuits. Nevertheless, because of each neuron has
different inputs, in order to define the network topology I preferred to
instantiate the model for every cell.

Motoneuron Model

The motoneuron receives its inputs from almost all the cells that com-
pose the neural circuit. In equation 3.2 M; represents the potential
(membrane potential) of the motoneuron i.

4
dt

where the terms exc; and inh; are expressed by equations 3.3

M; = (1 — M;)(exc;) — M;(inh;) (3.2)

exc; = w1 - B +wa - Inc; + ZZ:Lk#(zk - Iby)

. 3.3
mhi:K+w3-Ri+w4-Ibi+ZZ:1?k#(vk-Iai) (3.3)
the motoneuron output is
where the threshold function is defined by equations 3.5 :
r if0<z<1
Th(z)=4{0 ifz<0 (3.5)

1 ifz>1
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The first term in the right side of the equation 3.2 is the gain for the
excitatory part (exc); this gain is a function of the motoneuron poten-
tial. Therefore, the more the neuron is actives the smaller the gain will
became. This avoids the neuron’s potential saturating rapidly when the
excitatory synapses are strongly stimulated. The second part of the equa-
tion 3.2 gathers the inhibitory signals that feed the motoneuron (inh). In
the (inh) term the inhibitory signals are multiplied by the corresponding
synapse’s gain w; and vg, and added together. It is clear, that the gain
for the excitatory part 3.2will decrease when the motoneuron potential
increases. This contributes to maintain the neuron activation confined
under the maximum value. The summation in the (inh) part, takes in
account of the inhibitory action of the antagonistic Ia;, the summation
is extended to n, the number of motoneurons that constitute the reflex
circuit (n=2 for the elbow reflex circuit and 3 for the shoulder reflex
circuit).

The term K represents the leaky current of the neuron membrane. When
the neuron is not excited its potential will decrease thank to this term.
Finally F; is the error signal coming from the spindle cell M s;.

Model of the Ia Interneuron

The Ia interneuron potential model is described by equation 3.6:

d .
%(Ia,;) = (1 — Ia;)(exc;) — La;(inh;) (3.6)

where the terms exc; and inh; are expressed by equations 3.7

exc; = wy - B; +wq - Ins;

inhi =K+ Z’Zzng#i(vk . Iak) + wyq - Ri (37)
the interneuron output is
Tao; = Th(Ia;) (3.8)

Where the threshold function Th(-) is defined as in equation 3.3. As
it is possible to see in the second term of the second equation 3.7, it
depends by the output of the R cell of the corresponding side of the
circuit and by the activities of the antagonistic cells Iay.
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Model of the R Interneuron

The Renshaw cells model is formalized by equation 3.9:

d

where the terms exc; and inh; are expressed by equations 3.10

exc; = w;1 - M;

. 3.10
inh; = K + 370 zi(BE) + w2C's; (3.10)

the interneuron output is
ROZ‘ = Th(ROi) (3.11)

As is expressed in the second equation 3.10 the Renshaw cell potential,
like the Ta cell potential, depends on the output of the antagonistic Ren-
shaw cells. This cross inhibition has the purpose to let dominate, on the
antagonistic counterparts, the cell that has the greater activity. We can
interpret this mechanism as a competitive role: the cell more stimulated
will dominate the cell less stimulated. From a system point of view the
cross connection can not realize excitatory synapses otherwise the global
system will tend autonomously to the saturation point.

Model of the Ib Interneuron

The Ib interneuron potential is formalized by the following equations:

%(Ibz) = (1 — Ib,-)(ea?ci) - Ibz(mhz) (3.12)

where the terms exc; and inh; are expressed by equations 3.13

exc; = w; - F;

. n 3.13

Where F; is the force measure coming from the force sensor of the
actuator, and K a forgetting constant.
The interneuron output Ibo; is

Ibo; = Th(Ib;) (3.14)
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In the model I do not consider the model for the Golgi tendon organ,
but I consider only a normalized measure of the force.
As it is possible to see in figure 3.5, the Ib interneurons inhibit the
motoneuron of the agonistic muscle and excite also the motoneurons of
the antagonistic muscles. In the case of the shoulder reflex module, this
controls the dorsal, the pectoralis and deltoid actuators. The action
of the Ib interneuron permits the inverse myotatic reflex. For example
when the arm is forced in a rapid extension, the force in the dorsal
and pectoralis actuators will increase rapidly, which will increase the
activity in the corresponding Ib interneurons. Ib cells of the dorsal and
pectoralis muscles, in turn, go to excite the deltoid’s motoneuron. This
action permits the arm to follow the external force, and avoid muscle
break. Differently from the Grossberg et al. model [39] I do not take in
consideration the action of the other interneurons that are innervated by
the Ib afferent fibers.

Muscle Spindle and Inc¢, Ins Interneurons Models

The artificial muscle spindle has the main purpose of computing the er-
rors of position and velocity of the actuator. This model differs from
the model proposed by Grossberg et al. [39], [63] because it doesn’t take
in account the intrafusal muscle contraction. I adopted this model be-
cause of the structure of the actuator and contraction sensor. Indeed,
in the arm prototype, the contraction of the actuator is measured by
an external sensor that flexes when the actuator length decreases. It is
not possible to regulate the flexion of the sensor independently by the
actuator contraction, therefore it doesn’t make sense to use a specific
model for the intrafusal muscle.

The model for the muscle spindle M s is formalized in equation 3.15.

Ms; = Kp(L; — A;) + Ky {/ (%Li - GV)) (3.15)

Where L; represents the i*" muscle length, A; is the desired length for
the muscle, GV; the desired muscle linear velocity and finally K, and K,
are the gains for the position error and the velocity errors respectively.
The output of the artificial muscle spindle constitutes the error feed-
back for: motoneurons, Ia cells and cerebellum module. This error is
represented in equation 3.16

E; = Th(Ms;) (3.16)
69



3 The Bio-mimetic Control Architecture

The error can assume only positive values, this is in accordance to the
fact that all the neurons dynamics can vary between zero and one. When
the position or the velocity errors become negative they are neglected
by the artificial muscle spindles. This means that the corresponding
motoneuron is not stimulated and therefore it decreases autonomously its
potential. This acts in decreasing the contraction of the actuator that, in
turn, increases its length and contributes to decrease the negative error.
The models for the Inc and Ins interneuron are quite simple. These
neurons have the function to integrate the information coming from the
cerebellum module and from the P (stiffness) commands with the signals
coming from the path generator module. For this neuron I decide to
implement an algebraic model, and therefore avoid their dynamics.

Inc; = Ins; + Cs; (3.17)

where C's are the signals coming from the cerebellum module and Lt
is the command length for the actuators. In both the cells the signals
C's and P will increase their potential. Also for these cells the output is
limited between 0 and 1 by the threshold function.

Dynamic Synapse

The reflex neural network must be able to adapt to the dynamic charac-
teristics of the system that needs to be controlled. In order to perform
this behavior, neuron weights have to be changed during the system op-
eration. Their values will change until they reach the optimal solution for
the control. This means that the error must decrease as fast as possible,
and no overshoot can be present in the system response.

In supervised learning, the adjustment of neuron weights happens in
concomitance with function minimization; that is significant for the con-
trol problem in question. Instead, in unsupervised learning, the neural
network improves its performance using a task-independent measure of
the control quality.

However, this process usually is difficult to perform in real time, es-
pecially if the network has to learn and control the system at the same
time. What I have tried to implement in some neuron model is to use
dynamic input weighting. In this specific case, the weight is also a dy-
namic system, and the model in the Laplace domain is presented by the
equations 3.19.
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o1
w; = L’Lm(; . [lei — ngi])

Lim(V) =V if Viin <V < Vias
Lim(V)=0 if V < Vi
Lim(V)=1 if V> Vi (3.19)

Where K7 and K5 are opportunely chosen to set the "correct" learn-
ing rate. In fact, if Kj is too big, the weight saturates rapidly at the
maximum value permitted.

It is possible to set these two values empirically; let’s suppose that the
weight input x; (spiking signal) has the maximum frequency, we want
that, in these initial conditions, the weight increases and reaches the
maximum value admissible (one) in about one second. This specification
is sufficient to set the K; value. In the same mode we can set the Ky
value, but this time we have to consider a null z; input signal and choose
the period of time that the weight needs to pass from the high value to
the low admissible value (zero). In equation 3.19 the function Lim is an
output limitation, and it regulates the internal status of the weight.

The weighting differs from the Hebbian learning rule [64], because it
does not take into account the correlation between the presynaptic and
postsynaptic neuron activity. In fact, we can think at this learning rule
as a local observer: the weight is reinforced if the input of the neuron is
stimulated, and weakened otherwise. In a certain manner each neuron
is an independent controller and it realizes the control strategy taking
in account only his own inputs. This simplify the network configuration
and avoids the weight saturation.

3.5 Path Generator Module

The path generator module is capable of generating desired arm move-
ment trajectories by smoothly interpolating between the initial and the
final length commands for the synergetic muscles that contribute to a
multi-joint movement. The rate of the interpolation is controlled by the
product of two signals: the start signal GO and the output of the V; cell,
that computes the error in the length of the muscle i**. The Go signal
is a volitional command that in our case is formalized by the equation
3.20:
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ult — 7] (3.20)

where parameter Go scales the GO signal, 7; is the onset time of the
i*" volitional command, k takes in account the time that the GO signal
needs to reach the maximum value and u[t] is a step function that jumps
from 0 to 1 to initiate the movement. The V; cell dynamics is defined

d
%Vg =K(-V;+ Lt; — A;) (3.21)

where Lt; is the target length for the i*" muscle, the constant K defines
the dynamic for the cell and A; defines the present length command for
the i*" muscle. The model for the neuron A; is defined in equation 3.22.

LYY = GO -Th(V;) — GO Zn: Th(Vy) (3.22)

dt A
k=1k#i

Where again the T'h is the same threshold function used for all the
cells of my model. Study of Bullock and Grossberg [65] have demon-
strated that this path generator model can be used to explain a large
number of robust kinematic features of voluntary point to point move-
ments with a bell-shaped velocity profiles. The architecture for the path
generator is presented in figure 3.6. The circuit is suitable for the three
muscles of the shoulder joint that permit the upper arm flexion-extension
and adduction-abduction. The trajectory generators for the arm’s other
muscles are quite similar to that one presented. The inputs for the sys-
tem are the target lengths Lt; for each muscle and the outputs are the
signals A; that will feed the inputs of the reflex module of each joint.

3.6 The Cerebellar Module

In this section I propose a possible architecture for emulating the human
cerebellum; this model is based on the actual knowledge that neurophys-
iologists have of this organ.

A large number of cerebellar models are described in the literature, some
of which are briefly explained in the following section.
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Figure 3.6: Architecture of the Trajectory Generator Module

3.6.1 Computational Cerebellar Models

The regular structure of the cerebellum inspired several early computa-
tional models. In 1971 Albus linked the cerebellum to a single perceptron
proposed by Rosenblatt in 1962 [66]. In the simple perceptron model,
inputs are summed in association units from where they are connected
via adjustable weights to an output unit. All units are binary. A sim-
ple rule for adjusting the weights will eventually lead to the perceptron
generating a desired output for a given input: if the output was cor-
rect, increase the weights from active association cells; if the output was
incorrect, decrease the weights from active association cells. Another pi-
oneering computational model of the cerebellum was the CMAC (Cere-
bellar Model Articulation Controller) architecture introduced by Albus
in 1975 [67]. The basic architecture of the CMAC (in the implementation
of Miller et al. [68]) is depicted in figure 3.7. The first important feature
of the CMAC is the discretization of the input signals through the input
sensors. KEach signal activates a number of input sensors. The input
sensors are connected to the state space detectors in a regular fashion;
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these detectors are AND-units and therefore their output will assume
the value one only when all their inputs are active.

input state
SENSOrS space

detectors weights

IICHIE[}LI['

input
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multiple

T _--/
detectors

field

Figure 3.7: The CMAC model of the cerebellum.

The state space detectors are connected to the multiple field detectors
via random hashing. These detectors compute the OR function. Finally,
the weighted outputs of the multiple field detectors are summed together,
constituting the output of the CMAC. CMAC has the advantages of local
generalization,incremental training, rapid computation, output superpo-
sition and fast practical hardware implementation, but the hash coding
could introduce noise and it cannot be guaranteed to learn a low error
solution.

Bullock et al. [40] developed a detailed model of the cerebellar circuitry
that included all the cell types and connections in the cortex (Figure 3.8).
The model was designed to show how the cerebellum could learn timed
responses following a conditioned stimulus. Their simulations showed
how the Golgi feedback circuit could generate a spectrum of timed ac-
tivation peaks in granule cells that Purkinje cells could use to time a
response. Inhibitory neurons in the cortex (stellate and basket cells)
make fixed strength synapses with Purkinje cells, while parallel fiber-
Purkinje synapses are excitatory and modifiable. Because stellate cells
receive their input from the same parallel fibers that project to the Purk-
inje cells, this setup allows some granule-Purkinje cell weights to become
negative while keeping all the parallel fiber-Purkinje cell weights excita-
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tory, making the network more powerful.
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Figure 3.8: Model of cerebellar cortex proposed by Bullock et al.

Others authors have modelled the cerebellum proposing different ar-
chitectures (Houk at al. [69], Schweighofer-Kawato et al. [70]), Bullock
et al. [71], but for brevity they are not reported in this document.

3.6.2 Module Architecture

In order to test a complete control architecture that comprises all the
modules presented in this chapter, I decided to implement a simplified
version of a cerebellar model that includes the more important aspects
of the real organ. In their papers [72], [73], [74], [75], [76] Kawato et al.
argue that internal models of the arm are located in all brain regions
having synaptic plasticity. Furthermore they maintain that the direct
and inverse dynamic model of the arm are located in the cerebellar cor-
tex.
The goal that I want to pursue is the implementation of a system able
to learn the inverse dynamic model of the arm, and to adjust, through
the regulation of the Inc; and R; cells activities , its trajectory during
fast movement. The architecture that I adopted is presented in figure
(Figure 3.9).

The Gu; signals generated by the path generator module, that is a
vector of 7 elements, in the cerebellum module, constitutes the mossy
fiber inputs. These signals (excitatory) feed the granule cell layer (10x10
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Figure 3.9: Cerebellum Module

cells). In particular, each granule cell receives 4 randomly selected M fs
mossy fibers, in order to implement the sparse code behavior character-
istic for these cells. The outputs of the granule cells layer forms, in its
turn, the parallel fiber array. The only Golgi cell receives its inputs (ex-
citatory) from all the Mossy fibers, and inhibits all the granule cells. In
the Purkinje cells layer (1x7) each cell receives a beam of Mossy Fibers
(comprising one third of the Mossy fibers). Each Purkinje cell receives
also a single climbing fiber that regulates the weights of the connection
between parallel fibers and Purkinje cells. These weights permit the
cerebellum to learn the best control strategy in order to correct the arm
trajectory during fast movement. Purkinje cell outputs, in turn, go to
feed the inputs of the interposed nuclei layer. Each cell of this nuclei
receives the output (inhibitory) of a single Purkinje cell and only one
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3.6 The Cerebellar Module

mossy fiber signal (excitatory). In its turn, the output of each cell of the
interposed nuclei is sent to the reflex module and to the inferior olive
nuclei (inhibitory). The inferior olive’s cells receive the other inputs (ex-
citatory) from the reflex modules. These are the 7 error signals coming
from the artificial muscle spindles.

3.6.3 Cell Models

In this section I describe the model for each cell type used in the cere-
bellum module. Each cell is modeled as a leaky integrator, using a first
order differential equation. The membrane potential is defined in equa-
tion 3.23.

m
T (3.23)

where u are the cell inputs opportunely weighted. The cell output,
except the output of a inferior olive cell, is a positive real number that

represent the instantaneous firing rate, and is defined by the equation
3.24.

_ 1
- 1+exp(—a- (m—b))

Y (m) (3.24)

where a and b are two parameters that define the linear range of the cell
and the baseline respectively. For the inferior olive cell output I decided
to use a binary signal. Inferior olive cells, in the human cerebellum,
are known to fire at very low rates. Spontaneous firing occurs at about
2Hz, while the maximum rate is around 10Hz. The output of this cell is
modeled in equation 3.25.

Vip() =40 e < Vin (3.25)
1 if mye > Vi,

When m;, > Vi, the potential of the inferior olive cell is modified by
equation 3.26.

Mo = Mo — 1 (326)
T



3 The Bio-mimetic Control Architecture

Granule Cell Model
The granule cell potential is defined in equation 3.27.
i(m )=-—-m —wY—i—Z(w Yrr) (3.27)
TGrdt Gr) = Gr GIG e MFYMF -

where M is the pool of four mossy fibers randomly selected, wg is the
weight for the G— > G'r synapse and wjsr the weight for the M F— > Gr
synapse.

Golgi Cell Model

The Golgi cell potential is expressed in the following equations.

{ o % (me) = —ma + 30 (wpFiYpr;) (3.28)

Ypri = Yaci

where wpp; is the weight for the i® PF— > G synapses, and n the
total number of parallel fibers (100).

Purkinje Cell Model

The Purkinje cell potential is defined in equation 3.29.

d
TPE('mP) =-—mp+ Z(WPFCiYPF) (3.29)

1EN

where wprc is the adaptable synapse regulated by the climbing fibers.
The model for this weight is described in the last section of this chapter.

Interposed Cell Model

The model for the potential of the interposed cells is expressed in equa-
tion 3.30.

d

Tlpa(mjp) =-—mip —wpYp +wyrYymF (3.30)

where wp is the weight for the P— > IP synapses, and wysr the
weight for the M F— > I P synapses .
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3.6 The Cerebellar Module

Inferior Olive Cell Model

The following equation formalizes the potential for the single inferior
olive cell.

d
T[OE(mIo) = —mjo —wipYrp + wgFE (331)
Where w;p is the weight for the IP— > IO synapse and wg the weight

for the error signal F coming from the reflex module.

3.6.4 The Learning Role

A feature of learning in biological systems is that early in the process of
adaptation a strategy of high cocontraction (giving higher limb stiffness
and improving accuracy) is adopted, but with practice the level of co-
contraction is reduced (Ghez [77], [78]). Inferior olive cells are known to
fire at very low rates, with spontaneous firing occurring at about 2Hz,
while the maximum rate is around 10Hz. This presents a challenge to the
model since the entire movement lasts only on the order of 800ms, which
would allow for a maximum of 8 error correcting inputs per arm move-
ment. The weight wppre, in this adaptation, follows the the learning role
presented in equation 3.32.

d
7w (wpre) = +Ypr(B(1 —wpre) — a - YioYp) (3.32)

where Yjo is the teaching signal, o is a constant that determines the
learning rate and [ is the constant that regulates the forgetting mecha-
nism. The role is derived from the Hebbian role introduced by Hebb in
1949 [64] with the improvement introduced by Kohonen in 1988 [79], [80]
in order to avoid the weight saturation. This rule can be explained in
such a statement: If two neurons on either side of a synapse are acti-
vated simultaneously (synchronously), then the strength of that synapse
is selectively increased, otherwise the synapse is weakened [81].
In particular equation 3.32 embodies the hypothesis that long term po-
tentiation LTP will occurs whenever parallel fibers are active without
coincident climbing fibers activity. Long term depression requires that
both parallel fibers and climbing fibers signals be different from zero [82].
When the system is sufficiently trained it produces a signal similar to
the Ia spinal efferents (proportional to muscle errors) which opposes the
error and causes improved trajectories.
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4 Arm Model

4.1 Introduction

In this chapter I describe the kinematic and the dynamic arm models.
These models trace the principal mechanical characteristics of our ar-
tificial arm, and are used as a test bed for the control system strategy
instead of using the real prototype. Of course, I am conscious that it
is quite impossible to take into account all the characteristics of a real
system, nevertheless a simplified model will help me to test the overall
neural control behaviors. In section 1 I describe the direct kinematic
model in homogeneous coordinates; given the vector that describes the
joint angle positions, the algorithm will calculate the position of the arm
extremity in the Cartesian space. Section 2 deals with the computation
of the inverse kinematic model. In order to obtain a fast algorithm a
back propagation neural network is trained to perform the inverse com-
putation. In Section 3 I describe the dynamic model for the Arm . The
last section elucidates the implementation of the model using the Matlab
environment and depicts some testings in order to validate the overall
model.

4.2 Direct Kinematic Model

The arm I consider is an open kinematic chain with a total of 4 DOFs,
three are inside the shoulder joint and one in the elbow joint. Unlike clas-
sical manipulators, where each single joint has only one degree of free-
dom, the arm I designed has a joint, in the shoulder, with 3 DOFs. This
means that the position and the orientation of the upper arm depends
on three variables. Nevertheless it is possible, thanks to the disposition
of the supraspinatus and subscapularis actuators, to make a simplifica-
tion. We can consider the rotation actuated by these two muscles (with
respect to the axis defined by the upper arm) as independent from the
other two shoulder rotations, actuated by the other three muscles. If
we think in homogeneous coordinates, to define the upper arm position
and orientation , we can do two rotations with respect to an absolute
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reference system (fixed at the robot structure) and one rotation about
an axis fixed with the upper arm.

Z0

Zo zl Z1"
z1 Y
B Y1
> N
Y1 N Yo Yo
X1
X
a
Xo X0
Xo
P
‘P

Figure 4.1: Shoulder Rotations

We can represent the first two rotations relatively to the absolute axes
Xo and Y using a single matrix in homogeneous coordinates Hg} 5 note
that the rotation about the X axis is done before the rotation about the
Y axis (otherwise a different position is reached).

C8 0 S8 0N /1 0 0 0

o | 0o 1 0 ol[o ca —sa 0

Hop=1_s53 0 cg o|lo sa ca o (4.1)
0 0 0 1 0 O 0 1

where I have applied pre-multiplication. Now it is possible to exe-
cute the third rotation about to the Z1" axis, that is expressed with the
equation 4.2.

Cy =Sy 0 0
Sy Cy 0 0
v _ v v
=19 0o 1 0 (42)
0 0 01

Using post-multiplication we can calculate the matrix that defines the
direct kinematic for the upper arm (Equation 4.3).
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HSy =H g HY (4.3)

Given the three angles (a/37) it is possible to calculate the position of
the Elbow in the base reference system sdr0.

0

0 0 0
Pelbow = Haﬁ'y ’ _LUpArm (44)

1

where Lirparm is the length of the upper Arm.
Now we have to consider also the elbow rotation respect a relative refer-
ence system (sdr2) fixed with the forearm and with the origin translated
along the Z!" axis (see Figure 4.2).

Figure 4.2: Elbow Rotations

The matrix that represents this rotation is :

0 0 0

cs —S5 0

S§  C5  —Luparm
0 0 1

H} = (4.5)

o O O

This matrix defines the reference system sdr2 expressed in the sdrl.
The sdr2 is rotated about the axis X; and translated by the quantity
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Lyparm (length of the upper arm). Now we can formalize the arm direct
kinematic using the matrix Hg,ﬁm5'

0 0 ”
Hypys = HapyHs (4.6)

Therefore given a point relative to sdr2 that defines the wrist posi-
tion and given the four angles («, 3+,9) it is possible to calculate the
wrist position relative to the reference system sdr0 (that defines the base
reference system for the arm).

0
0

Pg)rist = H2,57,6 ’ Pg)rist = Hgﬂ'y,é ’ —Lroarm (47)
0

where Lpoarm is the length of the forearm.
It seems that the problem is solved, but this is not true. Indeed the joint
positions are fixed by the lengths of the actuators that are connected
with the upper and the forearm. Therefore to formalize an appropriate
direct kinematic model it is necessary to find a functional relationship F
between the actuator lengths and the elbow and wrist positions.

Ly
Lo
L
Pyrist = F | Ly (48)
Ls
Lg
L7

The vectorial field F' (R” — R3) is not defined for every points L € S,

where S is a subspace of R’ that includes all the possible combinations
of the actuator lengths. This assertion is clear if we think for example
at the elbow; we can not fix the triceps and biceps both at the minimum
lengths.
It is possible to find the direct kinematics of the arm solving a system of
equations, where each equation imposes a constraint on the arm position.
The points that I consider in the system of equations are reported in table
4.1.
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4.2 Direct Kinematic Model

Actuator Origin Point | Insertion Point | Actuator Length
Supraspinatus Osp Asp Lsp
Subscapularis Osc Asc Lsc

Dorsal Odo Ado Ldo
Deltoid Ode Ade Lde
Pectoralis Opc Apc Lpc
Triceps Otr Atr Ltr
Biceps Obi Abi Lbi

Table 4.1: Actuators Origin, Insertion and Lengths

4.2.1 Adduction-Abduction of the Upper Arm

The movement of adduction-abduction is governed by the action of three
muscles (dorsal, pectoralis, deltoid) and has two degrees of freedom.
During the movement we can divide the muscles in two groups: the
first comprises the muscles that are contracting (active), the second is
composed by the muscles that are releasing (passive). It is possible now,
fixed the length of the active muscles, to find the position of the upper
arm solving the following system of equations.

+ +

(z — Opcz)? + (y — Opey)? + (2 — Ope,)? — Lpc =0
{ (z — Odog)? + (y — Odoy)? + (2 — Odo,)? — Ldo® = 0 (4.9)
(z — 083)? + (y — Osy)? + (2 — 0s,)? — (|Os — Opc||)* = 0
where Os is the point that defines the shoulder position.
In the system the unknown terms x,y,z represent the point of the arm
where the pectoralis and dorsal muscles are inserted. The first two equa-
tions impose that the distance between the two muscle’s extremities are
equal to the imposed lengths, the third equation imposes that the dis-
tance between the muscle insertion and the shoulder is fixed during the
movement. If the lengths imposed for the actuators are admissible values
there are two possible solutions for the system, and we can chose one of
these. In particular I solved the system in a symbolic form using Matlab.
There are other two cases to solve in order to complete all the possible
combinations of active muscles; for both of them the systems to solve
are very similar to the first one and aren’t reported here.

4.2.2 Rotation of the Upper Arm

When the upper arm is positioned in the space we can already fix its
rotation. This movement is done by the supraspinal and subscapularis
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actuators. At the geometric level this orientation is imposed fixing the
point of the shoulder’s joint where the two muscles are attached as illus-
trated in figure 4.3.

Figure 4.3: Supraspinatus (blue) and Subscapularis (red) Insertions

The segment that connects this point with the center of the joint must
be orthogonal to the upper arm. If we fix the length of one of the two
muscles (for example the subscapularis) it is possible to find the point
where to attach the actuators by the solution of the following system.

(z — Oscy)? + (y — Oscy)?* + (z — Osc,)? — Lsec®> =0
{ (x - Oely) + (y - Oely) + (2 - Oel,) =0 (4.10)
(2 — 083)? 4+ (y — Osy)? + (2 — 0s,)? — (||Os — Asc|)? =0
where Oel defines the elbow position. In the system the first equa-
tion imposes that the distance between the insertion and the origin of
the subscapularis muscle is equal to Lsc. The second equation imposes
the orthogonality between the segment( mentioned before) and the up-
per arm. And the last equation imposes the distance conservation, be-
tween the shoulder origin and the two muscles insertion. The other case
(supraspinatus active and subscapularis passive) is quite similar to the
first one and therefore is not reported.

4.2.3 Adduction-Abduction of the Forearm

When the elbow position and orientation are already fixed there remains
another degree of freedom, the position of the forearm. This is imposed
fixing the biceps and triceps lengths. Again we have two possibilities; if
we fix the biceps length, the position where the two muscle attach can
be found solving the following system of equations.
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(z - Oscy) + (y - Oscy) + (2 - Osc,) =

{ (z — Obiy)? + (y — Obiy)? + (2 — Obi,)? — Lbi2 =0
(z — Oely)? + (y — Oely)? + (2 — Oel,,)?

— (|0el — Abi|)? =0
(4.11)

The meaning of the equations is similar to that introduced before.

4.3 Inverse Kinematic Model

Solving the inverse kinematic problem for the arm, means to find the
artificial muscle lengths when a target point for the wrist is known. A
necessary, but not sufficient, condition for the existence of the solution,
is that the point that we want to reach is inside the arm’s workspace.
In robotics terminology the manipulator workspace is the portion of the
space that is reachable by the robot’s hand. If we take in account only
the target point and we do not consider the arm orientation when the
target is reached, the inverse kinematic problem, in our case, has an
infinite number of solutions. This is due to the fact that to reach a point
in a three dimensional space only three degrees of freedom (3DOFs) are
needed, but our arm has four DOFs. To find a single solution I impose, in
the system equations, a constraint on the orientation of the plane formed
by the upper and forearm with the robot’s sagittal plane. Normally this
angle in a human being is about 20 degrees and remains fixed during the
arm movement. 4.4.

____________

Figure 4.4: Frontal View of the Arm
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It is possible to approach the inverse kinematic problem in two ways:
using the direct kinematics to generate input-output pairs that can be
used to train a neural network, or solving other systems of equations
where the wrist position is imposed. I followed the first approach which
seems to be more appropriate to this situation.

4.3.1 A Back Propagation Neural Network To Learn the
Inverse Kinematics

In order to obtain the input-output pairs necessary to train a neural
network, I executed the direct kinematic algorithm on a sufficient set
of inputs. Each input was an admissible vector of actuator lengths (as
admissible I intend a set of muscle lengths that bring the wrist in a
position inside the workspace ). To determine the correct intervals for
the actuator lengths, I performed some measurements directly on the real
arm prototype. In a second step, when this data was known, I created a
data set of points each representing a vector of actuators lengths. Finally
I calculated the corresponding wrist position.

As a neural network architecture I chose a multilayer perceptron [83]
with an input layer of three neurons, two hidden layers of 20 neurons
each, and an output layer of seven neurons.

Figure 4.5: Architecture of the Multilayer Perceptron

As an activation function for the neurons I chose a sigmoid, and for
the network training the back propagation algorithm. Before training,
the input-output pairs were normalized in order to obtain values in the
interval (-1,1). T have used a set of 1081 training data, that was obtained
using points in the workspace at distances of 5cm. The trend for the
medium square error is reported in figure 4.6.

As we see from the graph the error, after 50 epochs, decreases under the
value 2-1073. After 1000 epochs the error reached the value of 1.6-10%.
This required 16 hours of computation on a Pentium-4 (2GHz) equipped
with 500 Mb of memory.
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Training-Blue

o 5 10 15 20 25 . 3 35 40 45 £0
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Figure 4.6: Trend of the medium square error after 50 epochs

After the net was trained I conducted a series of tests to understand if
the neural network exhibits a generalization behavior. Therefore I gave
to the net positions for the wrist that were different from the positions
used for training, and I calculated the error of generalization. In figure
4.7 we can see the error for 28 wrist positions.

Figure 4.7: The Generalization Error on the wrist position (calculated
on 28 points)

The median value in positioning the wrist is about 0.8 cm, which is a
good value for my purposes.
The main advantage in using a neural network to compute the inverse
kinematics is that we can train the network on values acquired directly on
the real arm. This overcame the limitations in using an approximate arm
model, and is suitable especially for complex kinematic chains as found

89



4 Arm Model

in a humanoid robot. The other advantage is that the time required for
the network to compute the inverse kinematic, for a given point in the
workspace, is low in comparison with other algorithms. Indeed, when
the network is trained, the operations required to calculate the outputs
are simple additions and multiplications.

4.4 Direct Dynamic Model

The Arm dynamic model takes into account the dynamic equations that
permit to calculate the arm motion. These equations are useful not only
to simulate the arm movements, but also to synthesize the best control
strategy. In particular there are two principal problems that involve these
equations: the direct dynamic problem and the inverse dynamic problem.
In the first problem given the forces and the moments applied on the
arm it is required to find the arm acceleration, velocity and position.
In the second problem given the arm position, velocity and acceleration
it is required to find the forces and the moments needed to actuate
the system. I will concentrate on the first problem, therefore knowing
the forces of the actuators and eventually the external forces I want to
calculate the arm acceleration, velocity and instantaneous position. I will
not formalize the entire direct dynamic model, but I will focus on the
more critical aspects. In particular the model implementation was done
using the Matlab tool SymMechanics with the support of the Solidedge
software in calculating the inertia matrixes of our arm prototype. This
saved a lot time in modelling the system and gave me a full control of
each dynamic parameter.

From a mathematical point of view, the arm dynamics can be expressed
using the following Newton-Euler formulation:

= M)+ V(0,6) + GO) +T(0)F), (4.12)

This equation expresses the joint torques as a function of the motion
of the joints [84], where G(#) is the matrix of static forces due to gravity.
It depends on the arm position; for example the effect of gravity on
the joint torques is maximum when the arm is extended in the forward
position, and is minimum when the arm is in the rest position. The
term V() contains the centrifugal and Coriolis forces that act due to
the relative movement of a joint with respect to the others. The M (0)
term is known as mass matrix and accounts for the effect of the inertia
forces. Finally the term T'(0)F}, represents the torque generated by an
external force applied on the hand Fj,.
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For a single link it is possible also to define the inertia matrix J €
M]3 x 3]

Iy Izy I,
J=|1y Iy, I. (4.13)
Iy, Iyz I,

where the diagonal elements of the matrix are the moments of inertia
calculated about the principal axes, and the other elements are the prod-
ucts of inertia. This matrix permits to calculate the moment of inertia of
a body about a generic axis. The inertia matrices are very important for
the dynamic equation 4.12 and furthermore, I need them in order to im-
plement the dynamic model in Matlab. I obtained the inertia matrix for
each link using a specific software, (Solidedge). As an input the software
needs the 3D design of the arm and the material density. In table 4.2
the principal physical characteristic of the arm prototype are reported.

Link Length[m]| | Section[m?| | Mass [Kg|
Upper Arm 0.38 1-1074 0.21
Forearm 0.28 1-1074 0.1
Hand 0.14 1-1073 0.2

Table 4.2: Arm’s Physical Properties

Link Matrix of Inertia [1 - 107 °Kg - m?]
1780 0 0
Upper Arm 0 1780 0
0 0 13
590 0 O
Forearm 0 590 O
0 0 4
500 0 0
Hand 0 570 0
0 0 &9

Table 4.3: Arm’s Inertia Matrices

As it is possible to see, the arm is very light. The overall weight,
including the hand mass, is only 0.5 kilogram. This is due to the fact
that we chose polycarbonate and aluminium as materials to build the
arm’s mechanical structure.

The torque vector in the left side of equation 4.12 is a function of the
actuator’s forces.
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s —D-F (4.14)

where matrix D is function of the joint position of the arm. This ma-
trix like the other terms of equation 4.12 (V(0,G(6) ) was not calculated
directly because it is generated automatically by the SimMechanics soft-
ware. As inputs, the software needs the kinematic model for the arm
and the physical characteristics of each link. Therefore it is necessary
to specify the coordinates of each link with respect to a base reference
system. When all the quantities are defined, it is possible to choose the
parameters for the numerical integration or let the system choose the
more appropriate step of integration. This is usually better because the
system can choose different steps of integration depending on the actual
simulation condition. This reduces errors in the dynamic simulation es-
pecially during rapid variations in the motion. In the next sections I will
analyze the static and the dynamic models for the other components of
the arm: actuators and joints.

4.4.1 Joint Friction and Constraints

Friction modelling is very important for the overall dynamic behavior of
the arm. The friction occurs especially in the joints and can be divided in
dynamic and static. However in this model I neglected the static friction
because of its low relevance for simulation.

Dynamic friction in the joints, called also viscosity friction, depends on
the angular velocity and can be expressed by equation 4.15.

() = Kgq- J(t) (4.15)

Where K, represents the joint’s viscosity and ¥ the joint’s angular
velocity, which for the shoulder is a vector of three components and for
the elbow joint is a scalar. In particular for the shoulder the friction is
thought to be concentrated in the joint’s center of rotation. This intro-
duces a simplification with respect to the arm prototype, where in the
real shoulder’s joint the friction is distributed on all the spherical surface.
The other important thing that I need to model in the arm joint are con-
straints. Not all the angle positions are allowed during the movements,
therefore when these positions are reached it is necessary to implement a
constraint reaction force or moment. In order to avoid a brutal collision
I introduce a viscoelastic behavior for the joint when it is near to the
constraint. This model is expressed by equation 4.16.
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7—con(t) = Kv : ﬁ(t) + Ke : ﬁ(t) (416)

where K, is the viscosity constant when the joint is near to the con-
straint, and K, the elastic constant that implement the constraint’s re-
action force. It is clear that both the viscosity friction and the constraint
reaction force generate a moments opposite to the joint’s motion.
The coefficients I chose for the arm model are shown in table 4.4.

Link Ky Dm ]| K[ | K[

degres-s degres-s degres
Shoulder 0.01 0.01 0.05
Elbow 0.001 0.001 0.01

Table 4.4: Friction and Constraint Constants

4.4.2 Artificial Muscle Model

In our arm the actuation system is implemented using the McKibben ac-
tuator. It was introduced in the 1950s by the physicist J. L. McKibben
for the actuation of orthopedic prothesis. Thank to its properties, which
are comparable with those of the human muscle, it is also called artificial
muscle. In the 60s this kind of actuator was abandoned in favor of the
more efficient electrical motors. However recently the interest for it is
increased especially for applications in the field of humanoid robotics.
The actual success of this kind of actuator is due to its lightness (30g),
its cheapness (10 euro), the high ratio of force/weight (300) and its flex-
ibility. It is particular appropriate to actuate human like joints, that
require a linear motion.

The McKibben actuator is pneumatic, therefore in order to control its
length and its force it is necessary to control the inside pressure. The
system is composed by an internal tube made of rubber and an external
braided shell made of a polymeric material. When the inside pressure
increases, the actuator inflates and at the same time decreases its length
. Tondu and Lopez [85] have proposed a good model for this type of
actuator, as in the equations 4.17 and 4.18.

F; = mr2PJa(1 — Ke;)* —b] —
= [fe + (fs + fk]efi]%Sco - P;sign(x) (4.17)
sin a,

Sco = 27r,l, 4.18
(1 — ke)y/1 — cos? ap(1 — ke;)? (4.18)
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where Fj is the force generated by the artificial muscle; P; is the pres-
sure inside the actuator, rg and [y are its initial radius and length, x
is the actuator position, and a ,b, €, fi ,fs are other parameters that
characterize the actuator structure and the dynamic friction.
A dynamic model for this kind of actuator is quite complex, furthermore
I decided to take into account only the static behavior.
In order to find out the parameters of equation 4.17and 4.18,it is possi-
ble to use the virtual works principle applied on a elementary actuator
section (Figure 4.8).

\\pds
N e Sy A St Pds
" <

Figure 4.8: A Elementary section of the McKibben pneumatic actuator

Where F' is the module of static contraction force for the actuator
and 0l the elementary variation of the actuator length. I made also the
simplifying hypothesis: the pressure inside the inner tube is completely
transmitted to the external shell, there are no frictions between the in-
ternal tube and the external shell, and furthermore the section of the
actuator is cylindrical in each point. Using the virtual works principle
we can write:

P§V = —Fél (4.19)

where §V is the elementary volume. Therefore :

PS(A-1) = —F5l <= PISA + PASL = —Fél (4.20)

if we substitute 0 A and A we obtain

P2rrl(+0r) = (F 4 Prr?)(—4l) (4.21)

from which we obtain the actuator force in function of the inside pres-
sure and its length (Eq419).
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F = 2Pwrl(—%) — Prr? (4.22)

After some algebraical passages it is possible write the equation 4.22
as equation 4.23.

F(e,P) = (mr2)Pla(l — €)? — b (4.23)

where the parameters a and b depend on the actuator characteristic
and are equal to:

(4.24)

The variable € is the actuator’s rate of contraction and is expressed by
equation 4.25.

lo—1
E =

- (4.25)

where [ is the actuator length, [p the initial actuator length, ag the
initial angle between the cables of the braided shell and « the actual
angle. Observing equation 4.23, we can assert that the force increases
with the inside actuator’s pressure and decreases with the rate of con-
traction. Therefore the more the actuator is contracted the less is the
force developed. The maximum force is generated when € = 0.

Fyax = Prréla — b (4.26)

It is natural that the actuator can contract only to a given value of its
maximum length (usually 15 — 25%). When the actuator is completely
contracted the force generated is 0. In the following graph I present the
test of this model for an actuator with a length of 30cm, an inner tube
with a radius of bmm and parameters a=9 and b=4.

In figure4.9 are reported different characteristics at different pressures;
we can observe that the actuator force decreases with the rate of con-
traction (in chapter seven I will show also same experimental results on
a homemade actuator).
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Figure 4.9: McKibben Characteristic from the model simulation

4.5 Simulations of the Arm’s Model

In this section I report some results obtained from the simulation of
the dynamic arm model. The model that I tested is composed of the
structure of the arm, the modules that implement the joint friction and
the modules that implement the joint constraints. All the systems were
implemented in the Matlab environment.

In order to show the realistic behavior of the model I conducted a simple
experiment where the elbow joint was flexed rapidly. To perform this
movement I generated artificially (without the actuator dynamic module)
a force at the insertion of the biceps actuator and I measured the position,
velocity and acceleration for the two arm joints.

The force changes like a step (Figure 4.13) with the maximum value of
30N. In the graphs 4.11, 4.12 and 4.13 are reported the elbow’s angular
position, velocity and acceleration respectively.

As it is possible to see, the elbow position behaves like a non linear
system. The oscillations are damped and this is due to the friction
present in the arm joints. The elbow position reach a maximum value
of 0.87 radians (0.52°), therefore the force of 30N is not sufficient to
complete the elbow flexion. In figure 4.14 we can see the course of the
torque due to the elbow friction, as is possible to note the friction reaches
the maximum value when the joint assumes the maximum velocity.

In figures 4.15, 4.16, and 4.17 we can see the angular position, velocity
and acceleration of the shoulder joint. As it is possible to see there is
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Figure 4.10: Force step applied at the Biceps attach point
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Figure 4.11: Elbow’s angular position

Elbow Angular Velocity [Rad/s]

Figure 4.12: Elbow’s angular velocity

a rotation with respect to the X axis. This is due to the inertia forces
that are transmitted by the forearm to the upper arm during the elbow
flexion. In the final position both the elbow and the shoulder are flexed,
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Figure 4.13: Elbow’s angular acceleration
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Figure 4.14: Elbow’s viscosity friction

this because the arm’s barycenter, when the movement is terminated,
is positioned in order to guarantee the minimum value for the arm’s
potential energy.
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Figure 4.15: Shoulder’s angular position
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Figure 4.17: Shoulder’s angular Acceleration

During the movement the shoulder rotates only about the axis X, and
the rotation is opposite to the rotation of the elbow. In the next picture
we can see the overall arm movement during the flexion of the elbow.
In red are represented the actuators and in green and in blue the upper
arm and the forearm respectively. From the picture it is possible to note
that some actuators are very short, such as the supraspinatus and sub-
scapularis. This is not true for the real arm prototype, since an artificial
muscle can contract only the 20% of its maximum length, we need actu-
ators at least 25c¢m long in order to perform each movement. Therefore
for example for the shoulder rotation the insertions of the supraspinatus
and subscapularis do not coincide with that of the model. Instead, in
this case, the actuator’s representation in the model corresponds with the
real tendon that brings the movement from the artificial muscle, situated
in the back of the robot, to the shoulder’s joint.
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Figure 4.18: Three arm positions during the Elbow Flexion
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5 Reflexes Responses and
Adaptation

5.1 Introduction

In this chapter I present the results that show how the control system
can achieve reflex behaviors comparable to that of a human limb. I
will discuss the two principal reflexes that the system can emulate: the
myotatic and inverse myotatic reflexes. I will simulate a single joint
movement and I will compare the results with an optimal PD controller.
I will show the importance of the cross inhibition in the antagonist joint
actuators and the effect of an external force on the joint position. In the
last section I will explain how the reflex circuits can control the stiffness
of a single joint. In particular, stiffness control is very important for a
humanoid robot, especially when the robot is required to cooperate with
a human being.

5.2 Methods

The simulation of a structured dynamic neural network, like those pre-
sented in chapter three, requires substantial attention on the parameter
setting. Each parameter can be set between a minimum and a maximum
value, for the synaptic weigh this two values are zero and one respectively.
Other parameters are constants that fix the dynamic behavior of each
neuron.

Because of there are not specific methodologies to set these parame-
ters, I decided to apply an empirical method of trial and error within
a prefixed strategy. In order to better understand the behavior of each
sub-circuit, it was necessary to start the testing of the control architec-
ture by a initial exclusion of the less essential circuits. This methodology
allowed me to adjust the parameters in a simples way than considering
the whole system. The simulations started with the testing of the reflex
module responsible for the control of the elbow’s joint. At first I ex-
cluded the action of the interneurons la, Ib, R and considered only the
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5 Reflexes Responses and Adaptation

action of the motoneurons. Hence I adjusted the motoneuron synaptic
connection with the artificial muscles spindle and the Inc interneurons.
Subsequently I added one by one all the other interneurons and adjusted
their synapses. In table 5.1 are reported the more important synapse
values for the cells present in the elbow reflex module (in chapter three
they are reported in a general way w;).

‘ Inci+ > M; ‘ Ta;— >Iaj ‘ la;,— > Mj ‘ R,— > M, ‘

0.5 0.1 1 0.6
M;+ > R; Ri— > R; Ib;— > M; -
[ 06 ] 1 05 [ -]

Table 5.1: Synaptic weights for the Elbow Reflex Module

In table 5.2 are reported the neurons’s constants.

‘Neuron‘ K ‘KP‘KV‘

M; 0.07 | - -
Iaz- 2 - -
R; 0.2 - -
Ms; - 30 | 10

Table 5.2: Constant values in the Elbow Reflex Module

Note that Kp and Kwv constants are so high to adapt the position
and velocity errors (10~ 2order) to a value able to influence the artificial
muscle spindle’s dynamic (that changes between the values zero and one
10%rder). Note also that the muscle’s length and velocity are normal-
ized before use by the reflex modules. In performing the simulations I
chose a variable step of integration and the Dormand-Pricep integration
method. Furthermore, in order to reach a statistic significance, the same
simulation was performed many times.

5.3 Myotatic Reflex

In humans the myotatic reflex has the main purpose of regulating the
muscle tone and to maintain the articulation position fixed at the length
imposed by the high level centers of control.

In our system the artificial reflex should control the actuator pressures in
order to regulate the joint position, velocity and stiffness. Furthermore
the module should also compensate for disturbance forces that act in
altering the joint position. In the next section I will show how the control
system can exhibit these behaviors.
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5.3 Myotatic Reflex

5.3.1 Single Joint Movement

The first simulation shows how the elbow reflex module can govern the
actuator pressures in order to regulate the joint position. In this simula-
tion the biceps and triceps length commands were manually set, therefore
the path generator module, and the inverse kinematic module are not yet
connected to the reflex circuit. In figure 5.1 the elbow angular position
during the entire motion is reported.

14

121

08

06

Elbow Angular Position [rad]

0.4r

02

Time [s]
Figure 5.1: The Angular position of the Elbow

We see that the elbow position in the first movement reaches 0.4 ra-
dians (24.2°), with the second movement that starts at the fifth second
it reaches 1.15 radians (70°), and finally the joint is restored to the first
position.

Note that in the first movement there is a big over-elongation, partially

due to the fact that when the first movement starts all the neurons po-
tentials are set at the minimum value, and it take a certain time for the
neurons to reach the operative value. In the arm prototype a minimum
motoneuron activity is needed in order to maintain a sufficient pressure
inside the artificial muscles. This to avoid the detachment of the inner
tube from the external braided shell.
It is possible to note from the graph, that also in the second joint move-
ment there is a certain over-elongation. This behavior is characteristic
also for a human movement especially if it is very fast (Figure 5.2). In
figure 5.3 and 5.4 the elbow’s velocity and acceleration are reported .

From figure 5.3 it is possible to see how the elbow’s velocity follows a
human bell shape profile, thanks to the smooth control behavior of the
motoneurons.

In figure 5.5 are reported the motoneuron and interneuron signals during
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Figure 5.2: Human Elbow’s position during a fast movement (from [2],

[31)

the elbow flexion.

Starting from the bottom we can see the activities of the artificial spin-
dles M s; that measure the length and velocity errors in the biceps and
triceps actuators. When the first elbow movement starts, the biceps’s
spindle increases its activity rapidly this because, in comparison with the
length command, the actuator should be shorter. After 0.8 seconds the
biceps’s M s decreases its activity to zero , but at the same time there is a
burst in the triceps’s M's, due to the fact that the elbow has overcame the
target position and therefore the triceps should be contracted. Looking
at the axes that report the Ia interneuron outputs, it is possible to note
that the activity of this neuron are strictly correlated with those of the
Ms. Nevertheless their effect, now, is transmitted on the antagonistic
motoneuron. This action is very important for the elbow joint control.
Indeed thanks to this cross inhibition a big length or velocity error on
an artificial muscle, not only increases its pressure, but decreases at the
same time the pressure in the antagonistic artificial muscle. We can see

this influence in the motoneurons activities or directly on the actuator
force (5.6).

In this first simulation I prevented the action of the R; (Renshaw cells)
interneurons, as it is possible to see in the graph of figure 5.6. They are
important to maintain the motoneuron activity under control when the
elbow has reached a stable position. From the graph that depicts the
actuator force it is possible to note that when each movement is ended
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Elbow Angular Velocity [rad/s]

Time [s]

Figure 5.3: The Elbow’s angular velocity

Elbow Angular Acceleration [rad/s?]

Time [s]

Figure 5.4: The Elbow’s angular acceleration

the force increases autonomously in both the motoneurons, this causes
a stiffness increasing in the elbow joint. In humans this disease is called
hypertonia.

In the following simulation I enabled the R; interneurons and performed
the same movements as the first experiment (Figure 5.7).

This time, even thought the elbow performed the same movements,
the actuators force changed. Indeed from the graph in picture 5.8 it is
possible to note that after each movement the forces don’t increase like
in the first experiment.

This behavior is due to the R; interneurons that limit the motoneurons
potential when the elbow doesn’t move. We can see their activity in
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Figure 5.5: Motoneuron and interneurons activities during the Elbow
flexion

picture 5.9.

5.3.2 Effects of a Disturbance Force on the Joint Position

The other task for the myotatic reflex control is to compensate for ex-
ternal disturbance forces. In the experiment that I conducted, I applied
a force of 0.5N at the hand’s barycenter with a direction parallel to the
palm of the hand. This force pushes the forearm faraway from the body
and requires the elbow to extend. Before applying this force I flexed
the forearm to a certain position, in order to increase the pressure, and
therefore the force, inside the triceps and biceps actuators. Subsequently
I applied a step of force (10*" second) and measured the elbow position
(Figure 5.10); after eighteen seconds the force was removed.

As it is possible to see from the picture, when the force was applied,
for 0.5 seconds the elbow position changed and consequently the elbow
extended, but after this period the position was restored to the initial
value. We can understand this behavior from the graph that represents
the motoneurons and interneurons activities(Figure 5.11); when the force
is applied we can see a big activity in the Ms and [a interneurons of
the flexor. This means that the biceps’s motoneuron was excited and its
antagonist inhibited, in such a way that the increased force of the biceps
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Figure 5.6: The forces generated by the Biceps and Triceps actuators
during the elbow movement
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Figure 5.7: The Angular position of the Elbow in the second experiment

actuator and the corresponding decreased force in the triceps compen-
sated the noise force and restored the elbow position at the original
value.

After the force was removed we can see that the elbow suffers big
over-elongation and under-elongations relative to the final position. This
behavior can be observed also in human subjects when they are required
to maintain fixed an objects that exercises a force and unexpectedly the
force is removed.

5.3.3 Comparison with a PID Controller

In order to understand the merits and the lacks of this bio-mimetic con-
trol architecture I performed the experiment of controlling the elbow
position using a classical PID (proportional, integrative, derivative) con-
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Figure 5.8: The forces generated by the Biceps and Triceps actuators
during the second experiment

troller.

PIDyy(t) = Kp(e(t) + Ti[ /0 e(t)dr +Tp dil(tt)) (5.1)

Because I need to control two actuators it is necessary to use at least
2 PID, because rigorously, according to the control theory, we should
apply a matrix of four PID controllers if the system has two variables to
control. In this last configuration the PID outside the matrix’s diagonal
are used to take in account the reciprocal influence that the two control
variables have. Nevertheless I neglected this influence and consider a
diagonal matrix. The elbow joint that I want to control can be repre-
sented by a non linear MIMO system; non linear because the arm and the
actuator dynamics are not linear. In the classical control theory to syn-
thesize the controller the following steps are necessary: at first to make
a complete dynamic model, and then linearize it around an equilibrium
position. Following this methodology in our case is quite complex and
tedious, therefore I decided to apply an empirical method in tuning the
PID parameters. I used the Ziegler and Nichols method, which consists
in closing the control loop and increasing the proportional action K}D of
the PID until the system for a minimum variation in the inputs vari-
ables establishes a permanent oscillation of period T (actuator lengths
and joint positions). After this it is possible to set all the three PID’s
parameters with simple formulas (Equations 5.2).

Kp=06Kp T;=05T Tp=0.12T (5.2)
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Figure 5.9: Motoneuron and interneurons activities during the second
experiment

In our case the two PID were tuned using the same parameters show
in table 5.3.

|PID |Kp | T; | Tp |
1 [ 55 [0.05]0.012 |
2 | 55 ]0.05]0.012 |

Table 5.3: PID parameters

I decreased the value for the proportional gain Kp with respect to the
value calculated with the roles showed in equation 5.2 in order to limit
the actuator’s force. The result that I obtained in controlling the elbow
angular position is in figure 5.12, where the graph reports also the elbow
angular velocity.

As it is possible to see the target position is reached in only 0.7 seconds
and without over elongations. Nevertheless the force in the actuators is
larger relative to the reflex control module, and also it has an impulsive
shape (Figure 5.13). This means that to the actuators is required a big
stress, and should be dimensioned bigger in comparison with the force
specifications obtained from the simulation of the reflex controller.
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Elbow Angular Position

Figure 5.10: The Angular position of the Elbow during the application
of a noise force on the hand

5.4 Inverse Myotatic Reflex

The inverse myotatic reflex in human has a safety function and acts when
the muscle’s force exceed a dangerous value. Usually this reflex becomes
hyperactive as a result of disease or injury and therefore it is difficult
to observe it. In our reflex module this reflex is due to the presence of
the Ib interneurons whose activity becomes important if the actuator
force overcomes a pre-settled value 70N. In the experiment I applied on
the hand a force of -3N that will rapidly extend the elbow from a flexed
initial position.

This force will increment the bicep’s force over a hypothetical dan-
gerous value and therefore the inverse myotatic reflex will act. In figure
5.14 we can see the elbow position before and after the application of the
dangerous force. As it is possible to see that final position is different
from the start position, because of the inhibition effects of the Ib cells
on the agonist motoneurons. It is possible to see this effect in picture
5.15.

As it is possible to see at the eighth second when the force is applied
the activity of the biceps’s Ib interneuron increases rapidly, and this
decreases the activity of the flexor motoneuron. Note that at the same
time also the biceps’s M s increases its activity, because of the error in the
muscle length, but this is not sufficient to restore the position because of
the action of the Ib interneuron. If we look at the graph that reports the
muscle’s force we can see that they are limited by the inverse myotatic
reflex under a maximum value. In a robot the inverse myotatic reflex
can be useful in avoiding breaking the tendons that connect the artificial
muscle at the joint, and also to prevent damage to the actuators.
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Figure 5.11: Motoneuron and interneurons activities during the third ex-
periment

5.5 Joint Stiffness Regulation

The control of the joint’s stiffness is very important during the execu-
tion of a certain task with the robot’s arm. This is true for industrial
robots, but is particulary important for humanoid robots. Usually in-
dustrial manipulators operate in a protected environment where humans
have a restricted access, in order to guarantee a safe operation for the
robot and for the human. It is difficult to control the joint stiffness for
an industrial manipulator and even if this is possible the inertia force
that acts during the movement can be lethal for a human being hit by
the robot. Humanoid robots are expected to operate and collaborate
with humans, during a task execution, therefore the robot must not be
dangerous; this is in accordance with the first robotics law due to Isaac
Asimov: "A robot may not injure a human being or, through inaction,
allow a human being to come to harm ".

Humans usually can reduce or increase the joint stiffness when they are
performing a certain task. For example catching a heavy object that is
moving fast requires a stiffness increase of the lower and upper body ar-
ticulations, while making a caress to someone requires a low stiffness for
the arm’s articulations. The articulation’s stiffness, in turn, is regulated
by the muscle cocontraction.

In the reflex modules the stiffness is regulated by the P; signals that
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Figure 5.12: Controlling the Elbow position using standard PID
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Figure 5.13: Biceps and Triceps force under control of a standard PID

excite the Ins interneurons. In order to demonstrate such a capability
in the reflex module I increased the P; signals for the elbow actuators to
the maximum value possible, 1. Picture 5.17 shows the forces increasing
due to the P command.

The forces in the biceps and triceps actuators increase at the same
time, in order to avoid the joint movement. We can observe also that
the triceps increases its force more than the biceps; the important thing
is that the total momentum exercised on the elbow joint is equal to zero
in order to guarantee its position (Figure 5.18).

As it is possible to note, the elbow position does not change when
its stiffness is increased. We can also observe a collateral effect due
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Figure 5.14: The elbow position after the the application of a dangerous
force on the hand
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Figure 5.15: Motoneuron and interneurons signals during the action of
the inverse myotatic reflex

to the stiffness increasing: for a certain period there are some little
oscillations in the elbow joint. Surprisingly this phenomena is present
also in humans. When the muscles are very highly co-contracted, a
tremor will occur in the arm.
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Figure 5.16: Biceps and Triceps forces during the exhibition of the In-
verse Myotatic Reflex
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Figure 5.17: Biceps and Triceps forces during the application of a dan-
gerous force to the hand

Elbow Angular Position [rad]

1 . 1 1 . . . . .
0 2 4 6 8 10 12 14 16 18 20
Time [s]

Figure 5.18: Elbow angular position during the increasing of the joint’s
stiffness
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6.1 Introduction

This chapter explains the results obtained by simulating the whole arm in
reaching a target position specified in the Cartesian space. This behav-
ior requires the synergy of the entire arm control system. The pattern
generator will compute the straight trajectory, and at each instant, it
will send the desired muscle lengths and velocities to the reflex control
module. The same data will also be sent to the cerebellar module. The
module will integrate this data with the error feedback from the artifi-
cial muscles and consequently learn how to modify the command signal
to the artificial motoneurons set by the trajectory generator module. A
deep study and simulation of the cerebellum module is not discuss in
this thesis, but it will be the principal subject of future works.

6.2 Methods

The overall experimentation of the arm control system requires a big care
during each single phase of the simulation. Many modules are running at
the same time and interact for executing the task. As for the the reflex
modules in this case it is necessary to increment the complexity of the
control system step by step. The modules that compose the system are:

The Inverse Kinematic Neural Network: given a target point in the
workspace it computes the actuator lengths in order to reach that
point

The Reflex Modules: they regulate the joint positions and stiffness re-
ceiving as inputs the length and velocity command, the stiffness
command, and the cerebellum command.

The Path Generator: given the target position it calculates a smooth
trajectory for each single artificial muscle.

The Cerebellum Module: during a fast reaching movement it compen-
sates the hand trajectory for inertia and Coriolis forces
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I started the experimentation considering at first only the reflex mod-
ules: the elbow reflex module and the shoulder reflex module. The
shoulder reflex module, in turn, is composed of two submodules, one
that controls the shoulder rotation and the other that controls the up-
per arm flexion-extension and adduction-abduction. The overall reflex
behavior requires therefore 8 motoneurons and 42 interneurons, each of
which is represented by a non linear dynamical equation. Since I deal
with nonlinear dynamical equation, particular attention should be given
to system stability.

6.3 Considerations on System Stability

The subject of neural networks viewed as nonlinear dynamical systems,
with particular emphasis on the stability problem is referred as Neurody-
namics [86] [87] [88] [89] [90]. An important feature of the stability of a
nonlinear dynamical system is that it is a property of the whole system.
The presence of stability always implies some form of coordination be-
tween the individual parts of the system [91]. It appears that the study
of neurodynamics started in 1938 with the work of Rashevsky [92], in
whose visionary mind the application of dynamics to biology came into
view for the first time. The stability of a nonlinear dynamical system is
difficult to demonstrate. Usually, in a engineering background, stability
means that the output of a system must not grow without bound as a
result of a bounded input, initial condition, or unwanted disturbance.
This criteria is well suited for a linear system, however it is useless for
neural networks, simply because all such nonlinear dynamical systems
are stable according this criteria. Indeed all neurons have an activation
function that limits the neuron output under a given threshold.

When we speak of stability in the context of a nonlinear dynamical sys-
tem, we usually mean stability in the sense of Liapunov. According this
criterium, given a general dynamical system 6.1.

= Fj(z;(t), j=1,2,..N (6.1)

where the function Fj is a non linear function of its argument. We can
rewrite 6.1 in a compact form:

—x(t) = F(x(t)) (6.2)



6.3 Considerations on System Stability

where x represents the state vector of the system which changes with
time. During the life of the system its state can change defining a tra-
jectory and sometime tend to an equilibrium point which is called equi-
librium state X. The Liapunov theorems say:

Theorem 1 The equilibrium state X is stable if in a small neighbor-
hood of X there exist a positive definite function V' (x) such that
its derivative with respect to time is negative semidefinite in that
region

Theorem 2 The equilibrium state X is asymptotically stable if in a small
neighborhood of X there exist a positive definite function V' (x) such
that its derivative with respect to time is negative definite in that
region

The important point in using the Liapunov theorems is that they can
be applied without solving the state space equation of the system.
The reflex control system, can be described using the general model pro-
posed by Cohen and Grossberg in 1983, as a system of coupled nonlinear
differential equations:

% = aj(uj)[bj(uy) = D cijilw)l, j=1,... N (6.3)
=1

According to Cohen and Grossberg, this class of neural networks ad-
mits a Liapunov function, defined as

n n

E= %Z > cijpilu)p(u) = /OUj bj(A);(A)dA (6.4)

i=1 j=1 j=1
where
/ d
PN = T (V) (65)

The definition of equation 6.4 is valid if the synaptic weights of the
network are "symmetric" ¢;; = c¢j;, the function a;(u;) > 0 and the
nonlinear input-output function satisfies the condition for monotonicity
%jgaj (uj) > 0. If all these hypotheses are respected the neural network
is globally asymptotically stable.

In my neural circuits the reciprocal influences between the cells are
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equals, the gain for the inhibitory and the excitatory terms in the neuron
state equation are in any case greater than zero, and the input-output
function is monotonic. Therefore in accordance with Cohen-Grossberg
the network is globally asymptotically stable.

We can also assert that the arm model and the prototype are asymptot-
ically stable systems, nevertheless, since the control system is closed in
a loop with the arm model (or real system), the global stability is not
guaranteed. Rigorously we should demonstrate the stability of the closed
loop system, but this requires a complex model of the whole system and
moreover is not the principal goal of this work. We can be satisfied in
testing the global stability empirically during the simulations.

6.4 Upper-Arm and Forearm Coordination

Every arm movement requires coordination between the joints and there-
fore between the arm’s artificial muscles. In order to govern each muscle
in an appropriate way the reflex modules should be coordinated. The
system that permits this coordination is represented by the inverse kine-
matics module. As described in chapter four this module consists of a
multilayer perceptron neural network. Given a trajectory in cartesian
space this module can calculate in each instant the muscle length vector
that, in turn, is sent to the path generator module. The path genera-
tor can therefore generate the appropriate signals for the reflex modules.
In figures 6.1 and 6.2 we can see a straight trajectory obtained by the
inverse kinematics module. In the pictures are reported some arm config-
urations relative the solutions that the neural network found in solving
the inverse kinematic problem. The straight line that is followed by the
arm is reported in a parametric form in equation 6.6.

r =19
y=204+(5-5) (6.6)
z=-5

As we see in figure 6.1 the line is not exactly followed, this is due
to the error performed by the inverse kinematic module in calculating
the muscle lengths. Although the precision of the neural network is in
the order of 1073, this not sufficient, because the network is required to
generalize in calculating the muscle lengths for positions never presented
to it. Moreover a little error in the muscle lengths can produce an error
of few centimeters in the hand positioning. This problem can be resolved
by integrating the arm with a stereoscopic vision system able to apply a
trajectory adjustment using the visual information.
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Figure 6.1: Straight trajectory generated by the Inverse Kinematic Mod-
ule (3D view)

6.4.1 Reflex Modules Coordination

In testing the action of the all reflex modules I made a simple experiment;
after connecting to the arm all the reflex modules, I flexed the elbow
joint and monitored all the neuron activities and the muscle lengths
error. In figure 6.3 we can see the elbow movement. Unlike one of
the first experiments during the testing of the dynamic arm model, the
shoulder position changes less during the movement. This is due to the
shoulder’s actuators that this time are active and therefore prevent the
joint rotation. We can analyze the combined action of the different reflex
modules observing the seven motoneuron activations reported in figure
6.4.

It is possible to see the bicep’s motoneuron increases its activity in
concomitance with the movement initiation. After 0.4 and 0.8 seconds
the activity of the dorsal and the pectoralis motoneurons increase, in
order to make a certain resistance to the shoulder flexion. It is possible to
note also the potential increasing of the supraspinatus and subscapularis
motoneurons in two different instants. This will cause a little rotation of
the shoulder’s joint, nevertheless when the elbow movement is finished
all the muscles are contracted at the commanded length. In figure 6.5
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Figure 6.2: Straight trajectory generated by the Inverse Kinematic Mod-
ule (Upper view)

we can see the trend in the length error of the muscles.

6.4.2 Path Generator Functionality

The path generator module has the main function to generate the desired
trajectory for arm movements by smoothly interpolating between the
initial and the final length commands coming from the inverse kinematics
module. The movement starts when the volitional GO signal is sent to
the module, at this time the V cells start to integrate the target length
command. The output of the V cell is multiplied by the GO signal and
this constitutes the velocity command for the artificial muscle spindle
and the input for the A cells. When the target length command is equal
to the output of the corresponding A cell the movement is terminated.

In figure 6.6 the signals that affect an elbow movement are reported
. As it is possible to see, the GO signal has a sigmoidal trend, and it
regulates the velocity and the duration of the whole movement. The
velocity command signals have a smooth profile, in order to limit the
acceleration of the joint. After 0.3 seconds the length commands for the
elbow’s reflex module have reached the target value and therefore the
movement should be ended.
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Figure 6.3: Flexion of the Elbow

6.5 Slow Reaching Movements

In human beings, we can classify as slow a movement that has an overall
duration longer than 0.8 seconds. In this case inertia forces and Coriolis
forces have a negligible influence on the arm motion. This is particular
true for a light arm like our prototype. During a slow reaching movement
in the human body the proprioceptive information can arrive on time to
the superior nervous center, and therefore it possible to adjust the arm
trajectory and compensate for interaction torque.

In our control system this behavior is obtained by the integration of the
inverse kinematic, the path generator, and the reflex modules. Given
a trajectory in Cartesian space, the inverse kinematic module generates
the instantaneous target length vectors for the path generator. The path
generator, in turn, calculates a smooth path for each muscle’s trajectory.
Finally the reflex modules, using the sensorial information, adjust the
rate of contraction for each artificial muscle.

In order to verify the correct integration between this three modules, I
performed an experiment where the arm should reach a target position
in its workspace following a given trajectory. In figure 6.7 we can see
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Figure 6.5: Muscles Error length, values are normalized relative the
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the results of this experiment. The trajectory that the wrist of the arm
should follow is a straight line, the overall movement duration is 2,5
seconds.

As is possible to see the wrist doesn’t follow a real straight line (purple
line), but tends to move along an arch (black line). The final error in
the wrist position is 3 centimeters and the medium error is 2 centime-
ters. The biggest error in the wrist positioning is due to the shoulder
joint where the actuator’s length error has more effect on the final arm
position.
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Figure 6.6: Length and Velocity command signals generated by the Path
Generator

6.6 Preliminary results in Fast Reaching
Movements

It is interesting to note that children during the first year of life tend
to perform slow movements of exploration, in agreement with the the-
ory [72], [73] that in order to perform rapid movement it is necessary
to use the inverse dynamic model of our limbs. In the brain this in-
verse dynamic model is learned by the cerebellar circuits. Bastian et
al. [93], [94] demonstrated that the cerebellum compensates for interac-
tion torques that would otherwise push the arm off its desired equilibrium
path during fast reaching movements. While feedback control could in
principle compensate for interaction torques, it is limited by both long
delays in the nervous system and the dynamic properties of muscles and
proprioceptors. It was demonstrated that the cerebellum can implement
a feedforward, nonlinear predictive regulation by learning part of the
inverse dynamics of the arm.

6.7 Cerebellar Module Setting

In the cerebellar module the granule cell layer, composed of 100 cells,
acts as an expansion encoder [95]. Each cell of this layer receives four
randomly selected mossy fibers, which in turn are represented by the Gv
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Figure 6.7: The Arm performing a slow movement, in purple the desired
trajectory and in black the one performed

signal coming from the path generator module. The information that
this layer codes is only the velocity command for the artificial muscles;
nevertheless it is possible feed the layer also with other mossy fibers
carrying different information. For example we can provide to the layer
the target position command for the artificial muscles or the desired
torque for the arm joint. In figure 6.8 we can see the representation of
the granule cell layer connected with the seven mossy fibers.

To represent the layer activity I used a matrix where the gray inten-
sity of each cell represent the activation level of its corresponding neuron,
this permits us to take under control a big amount of data and to un-
derstand some behavior of the entire cerebellum module. An example of
instantaneous activation for the granule cell layer is presented in figure
6.9.

The only Golgi cell present in the model, closed in a loop with the
granule cell layer, acts as a gain controller in order to maintain the total
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Figure 6.8: Sparse Connections between mossy fibers and Granule cells

energy in the granule cell layer at a constant level and ensure a sparse
encoding.

The purkinje cells layer, formed by seven neurons, receives its inputs
from the granule cell layer. These inputs are weighted by an adaptable
synapses that is regulated by the activity of purkinje cells, inferior olive
nuclei and parallel fibers (outputs of the granule cells layer). The output
of the purkinje cell layer goes to inhibit the interposed nuclei layer, which
in turn receives also excitatory inputs from the mossy fibers. The inter-
posed nuclei activity represents the output for the cerebellum module
that goes to excite the Inc interneurons and inhibit the Renshaw cell in
the reflex module. A first parameter setting for the cerebellum module is
presented in table 6.1, parameters represent the constants used to model
the cell membrane potential.

During the first experiment, in order to verify the correct working for
the cerebellum module, integrated with the other modules, of the whole
control architecture, I set the learning rate to a "big value" o = 0.01.
Normally this constant should be settled to a smaller value in order to
permit the artificial cerebellum to learn from trial of fast movements.
Then I executed 10 straight reaching movements: at first the elbow is
flexed then when it reaches an angle of 90° the straight movement starts.
The overall movement last 0.8 seconds. In figure 6.10 are reported three
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Figure 6.9: An example of instantaneous activation for the granule cells

layer
Cell layer Time constant 7 | s o | Maximum rate
Granule cells .02 8 5 1
Golgi cells .05 D 10 1
Purkinje cells .02 .005 | 100 1
Interposed nuclear cells .02 .05 | -20 1
Inferior Olive .02 .05 | -20 1

Table 6.1: Cerebellum Module Parameters

of the 10 trials: the first one; the 7*"; and the last trial. As it is possible to
see the target point is not reached, but the trajectory became more and
more straight. Second a first data analysis it seems that the output signal
coming from the interposed layer goes to increase the activity of the
triceps and deltoid artificial muscle during the first part of the movement.
Nevertheless it remain to clarify better the cerebellum-module efficacy
in controlling the arm and compensating Coriolis and centrifugal force.
This by intensive simulation and testing, it will be the goal of future

works.
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Figure 6.10: Three trials of fast reaching movements (in black the desired
trajectory)
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7 Experimentation on the Arm
Prototype

7.1 Introduction

This chapter will describe the part of my work that deals with the con-
struction of and experimentation on the arm prototype. Experimenting
with a real system is exciting but at the same time requires a total ded-
ication. During the time spent in the laboratory many difficulties were
encountered, but at the same time many new ideas came up to solve the
day by day technical problems. But as every prototype is never fully
completed, and when it is, is time to move to a new implementation.
In the first section of this chapter I analyze all the parts that make up
our system; I describe the implementation and the experimentation on
the artificial muscles, the sensors, and the mechanical arm structure. In
the second section I show the principal arm movements, like the forearm
and shoulder flexion and extension, the shoulder abduction, adduction
and rotation. Finally, in the last section, I report some experimental
results that show the effect of a noise force on the elbow position.

7.2 Prototype Description

As introduced in the third chapter our artificial arm was designed with
the principal goal to mimic the structure and the functionalities of the
human arm. The artificial limb is expected to be integrated in a hu-
manoid robot, therefore the proportions of a human arm are respected.
The arm has a total of four degrees of freedom, three in the shoulder and
one in the elbow. Future developments will give the arm another 2 DOF
in the wrist and a 12 DOF and five fingered hand. The particularity
of this arm is the shoulder joint, that has the three DOF collapsed in
a single point; this allows the joint to rotate respect an arbitrary axis.
The shoulder rotation is possible thanks to five artificial muscles that
mimic the function of: supraspinatus, subscapularis, deltoid, pectoralis
and dorsal muscles present in the human arm. Relatively to a small
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size manipulator our arm is lighter, the overall weight comprising links,
joints, actuators, sensor and body is only 3Kg. Although of low weight,
the system can lift and move masses of 1Kg; this means that the shoul-
der’s actuators must generate forces in the order of 300N. The physical
characteristic of the prototype and artificial muscles are reported in ta-
bles 7.1 and 7.2.

Link Length[m] | Section[m?] Material Mass [Kg]
Upper Arm 0.38 1-107* Aluminium 0.21
Forearm 0.28 1-1074 Aluminium 0.1
Hand 0.14 1-1073 Polycarbonate 0.2

Table 7.1: Physical Properties of the arm prototype

Actuator Min.Length[m] | Max.Length[m] | Cont.[%] | Mass|g]
Biceps 0.23 0.29 20.7 30
Triceps 0.29 0.35 17.4 40

Subscapularis 0.169 0.208 18.7 30
Supraspinatus 0.162 0.201 19.3 30

Pectoralis 0.206 0.25 17.5 30
Deltoid 0.153 0.18 15 30
Dorsal 0.32 0.403 20.7 40

Table 7.2: Artificial muscles characteristics

As we see in table 7.2, the contraction rate for each single muscle is
only 20%. This obliged me to realize and install artificial muscles that
are longer than human muscles. The biggest problem was encountered
in mounting the dorsal actuator that has a length comparable with that
of the robot’s trunk. I resolved the problem by installing it along the
diagonal that connects the shoulder with the opposite lower part of the
trunk, in order to avoid actuator bending.

The shoulder actuators were fixed at the robot trunk with one extremity,
and to the upper arm with the other. The elbow actuators are instead
connected between the upper arm and the forearm. The connection be-
tween the actuator and the mechanical structure is possible thanks to
tendons made of polymeric materials that are fixed with the links with
micro-screws .

Before building the arm I designed it(Figure 7.1) using a 3D CAD soft-
ware; this permits me to chose the best arm shape and to size each single
part in view of its purpose.

The other advantages of using a 3D CAD is the possibility to calculate
automatically the link mass and inertia, needed to implement a realistic
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Figure 7.1: The 3D Arm design, realized using Solidage software

arm’s dynamic model (described in chapter four). The entire arm and
trunk structure was built using light material such as aluminum and
polycarbonate, and different pieces were connected together using screws
or special glues.

Figure 7.2: Particular in assembling the shoulder joint

Very critical was the assembly of the shoulder joint. In order to give
a big mobility to the forearm , the spherical joint was surrounded by
two holed laminas in posterior and lateral position (Figure 7.2). The
laminas permit the spherical joint to rotate into any position but at the
same time prevent the backward rotation of the upper arm. In table
7.3 are reported the rotation ranges for the shoulder and elbow joints.
Rotation of the shoulder is around an absolute reference system when
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the arm is in the rest position.

Joint Rotation X axis | Rotation Y axis | Rotation Z axis
Shoulder 150 150 90
Elbow 120 0 0

Table 7.3: Range for the arm’s joints

In figure 7.3 we can see the overall arm prototype Mazimum One.

Figure 7.3: Maximum One: The humanoid Arm prototype

The position and the torque of each joint is controlled by a general
purpose Analog/Digital card (Figure7.4) mounted on a dedicated PC
also referred as "Target PC". This PC is governed by the XpcTarget op-
erative system, which is a special kernel available with Simulink software
(tool of Matlab) specifically for real time applications. The program that
implements the modules of the overall control system runs in real time
on it. The sensor signals are acquired and elaborated by the target PC
with a frequency of 1Khz, then the control signals are sent to the boards
that operates the actuators.

All the control software was written in Simulink and subsequently com-
piled and sent to the target PC via the serial port. This methodology

132



7.2 Prototype Description

allows me to employ, with little modification, the same software that I
used during the arm simulations.

Target PC
Address BU
Digital < >
Qut puts Sensors Board -~
A/D CARD -
PCL 812
Anal og Lp —
Imputs (g ctuators Board Humanoid
Anal og Data BUS Robotic Arm
Qut put s
F8232
Host PC
User Interface
Perosonal PC +—>
(Matlab Softwar €) )
Human Being

Figure 7.4: Hardware that compose the Arm Control System

The user can interact with the system using a laptop (Host PC) con-
nected with the target PC via a RS232 serial port. During the robot
operation it is possible change the control parameters on line; this per-
mits the user to verify their effects directly when the system is operating.
Experimental data can be acquired and saved using the host PC. Fur-
thermore it is possible to monitor the system’s variables using virtual
probes which run on the host computer and sample the signals with a
prefixed frequency.

7.2.1 Artificial Muscle

The arm’s actuators, also referred to as McKibben artificial muscles, are
one of the most important parts of the system. Because of this, I dedi-
cated a lot of time to their design and experimentation. Depending on
the material used for their construction, they present different static and
dynamical characteristics. Choosing the right materials permits to ob-
tain different contraction rates and different fatigue limits. Usually the
thicker the inner tube, the less is the contraction at the same pressure.
On the fatigue limit Hannaford et al. [17] have tested different materi-
als and discovered that the best material to use for the inner tube is
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latex; this material at 3bar can operates 6000 times without failure and
therefore is suitable for this application.

Figure 7.5: Household Mckibben actuator during the released and con-
tracted phases

A McKibben actuator use as a primary source of energy compressed

air, therefore for its operation other devices are necessary in order to
control the inside pressure. Considering that the actuator should be
contracted and released with high precision to be effective at least two
proportional electro-valves are needed. One of those is used to increase
the inside pressure and the other to decrease it.
In my experimentation I tested the homemade actuator (Figure 7.5) at
different pressures in dynamical and statical conditions. To conduct the
testing I built an experimental structure (Figure 7.6) where I fix the
actuator extremities and measure its length and force.

Figure 7.6: The experimental structure for testing the actuator

Static Characteristics

During the static tests, the actuator was constrained at both extremities
and its inner pressure was regulated in order to reach a fixed value. The
experiment consists in increasing, with a tensional device (Figure 7.7),
the actuator length and at the same time measuring its force.
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Figure 7.7: Statical testing

The experiment protocol consists in the following steps:

1.

When the actuator was in its resting phase (P = 0) I measured the
parameters ly, ag and 7.

. The inner pressure was increased at the value F; and in this con-

dition I measured the actuator’s length L; and calculated the rate
of contraction ¢;.

. The actuator’s length was gradually increased with the tensional

device and for each length L; I measured the correspondent F;

. When the actuator’s length was at its maximum value (¢ = 0) I

stopped the pulling phase.

. I'started to decrease gradually the actuator’s length and I measured

its length and force.

. When the actuator’s length was restored to its initial value I stopped

the experiment.

With this process I was able to obtain the static characteristic of the
actuator at different pressures. Results are reported in figure (7.8).

As it is possible to see the more the actuator is contracted the less
is the force generated; we can also note that the characteristic presents
a hysteresis. Indeed the relationship between the force and the rate of
contraction presents two different trends if the actuator is contracting or
releasing. This behavior is not found in the model represented by the
central line in the graph.

I repeated the same experiment for different pressures, and obtained the
characteristics present in figure (7.9).
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Figure 7.9: Actuator characteristic at different pressure

Observing the graph we can assert that the force in the actuator can
be controlled by adjusting the inner pressure; nevertheless, as shown also
by the model, this relationship is not linear.

Dynamical Characteristic

In order to test the dynamical response of the actuator, I connected a
mass at one of its extremity and incremented rapidly the inner pressure.
Length and force data was acquired with a frequency of 0.1Khz.

The response of the system is reported in figure 7.11, where we see
that the actuator reaches the maximum contraction in only 200ms, with
a trend characteristic of a non linear system.
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Figure 7.10: Dynamical testing
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Figure 7.11: Actuator’s dynamical characteristic

7.2.2 Sensory System

The proprioceptive information in the arm is acquired by two dedicated
boards that I designed in order to accomplish my needs (Table 7.4).

Board Sensorial Function Number of channels | Output signal
1 Force measurement 16 0-5V 100mA
2 Position measurement 16 0-5V 200mA

Table 7.4: Sensory Boards Functionalities

In particular in the "force board" each channel, in order to amplify
the weak signal (1-5mV)coming from the force sensor, is equipped with a
Wheatstone bridge and an integrated instrumentation amplifier with an
adjustable gain (0-1000). Each channel converges in an analogical mul-
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tiplexer which output is sent to an A/D input of the A/D card installed
on the target PC. The target PC, in turn, should generate the correct
addresses in order to sample with an appropriate frequency each force
Sensor.

Force Board FS1
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Figure 7.12: Sensorial Boards Schema

This solution permits to have virtually 16 x 16 channels and therefore

the capability to acquire in real time the data of 256 sensors. It seems
a big number of sensors, but if we think of a humanoid robot with 70
DOF (6 x 2 arms, 17 x 2 hands, 3 neck, 2 x 2 eyes, 6 x 2 legs, 5 trunk)
these channels are indispensable. Indeed each degree of freedom requires
at least one actuator, the actuator in turn requires at least a force and a
length sensor (70 x 2 channels). Furthermore if we want to measure also
the joint angle we need 70 other channels.
Also the "position board" has 16 channels, nevertheless this time the
electronic circuit is simpler than the "Force board". Indeed the signal of
the position sensor doesn’t need amplification and can be sent directly
to the multiplexer.
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Force Sensors

As for the Golgi tendon organ, the force sensor is able to measure the
tension applied by the artificial muscle on the arm’s link. In commerce
there are not force sensors that satisfy my needs: small size and cheap.
Therefore also in this case I developed my own specific system. The force
in a normal size artificial muscle can change between 0-100N, therefore
I was able to realize a small sensor using a curved lamina made of alu-
minium and a strain gauge. The strain gauge was attached to the lamina
using a special glue (Figure 7.13), therefore when this lamina is pulled
it deforms the strain gauge, changing its resistance.

Figure 7.13: Force Sensor

The signal generated by the Wheatstone bridge is in the order of few
mV therefore should be amplified at least 10 times. Important is the
power supply for the sensor which should perfectly stabilized and noise
free, otherwise after the amplification stage the noise is comparable with
the signal. In figure 7.14 we can see the characteristic for a small size
force sensor. As it is possible to see the characteristic is quite linear.

Muscle Length Sensors

In order to measure the muscle length we needed a sensor to be con-
nected in parallel with the artificial muscle. This was a problem because
there are some actuators, like the pectoralis, that are a little curved.
Furthermore the muscle length is about 30cm and this means that the
length of the sensor should be at least the same.

The artificial muscle when contracts, became shorter in the same way
in each of its portions. Therefore it is possible to calculate its length
measuring the length of one of its parts. The sensor that I used is called
a flex sensor, it works on the piezo-resistive effect. When it is flexed
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Figure 7.14: Force Sensor Characteristic

changes its resistance (Figure 7.15) in the order of Kohm, therefore the
signal doesn’t need amplification.

Contraction
Sensor

Figure 7.15: The artificial muscle with in parallel the Length Sensor

Joint Position Sensors

In the prototype the elbow position can be measured using the length
measure of the triceps and biceps actuators, or using the joint sensor
which is more precise. This consists in a rotative potentiometer that is
connected with the body at the upper arm and with the rotor at the
forearm (Figure 7.16).
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Figure 7.16: Elbow’s angular Sensor

7.3 Actuation of Basic Arm Movements

In this section I will show some basic movements that can be obtained
with our arm prototype. Furthermore I will show how these movements
are comparable with those of the natural limb. Relative to similar sys-
tems [36], [7] our arm has a real three degrees of freedom shoulder actu-
ated by five artificial muscles, that make it able to perform more natural
movements, comparable with those of the human limb.

7.3.1 Arm Flexion and Extension

In this first movement the flexor actuators are contracted. In particular
the shoulder joint is flexed by the deltoid and the elbow by the biceps.
The other actuators can be partially activated, but their action should
not block the joint’s rotation.

Thanks to the independent actuation of the two joints, it is also pos-
sible to flex only the elbow maintaining the shoulder fixed; in this case
only the biceps should be contracted and the triceps released. Or flex
the shoulder maintaining the elbow extended ; for this action the deltoid
should be contracted and the dorsal released. The elbow actuation dif-
fers from the natural counterpart because of triceps and biceps actuators
are "monarticular", whereas the natural muscle effects both the shoul-
der and the elbow movements. In a robotic arm this simplifies the arm
control, so the two movements can be regulated with two different reflex
modules.
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Figure 7.17: Flexion of the Arm’s joints

7.3.2 Arm Abduction Adduction

In the arm adduction and abduction only the shoulder artificial muscles
are involved in the movement. In particular to perform the adduction the
pectoralis and the deltoid should be activated. The deltoid is partially
activated and its action fixes toward which part of the trunk the arm is
adducted, while the pectoralis pulls the upper arm toward the trunk.

Figure 7.18: Adduction of the Arm

During the abduction movement the actuators activated are the del-
toid an the dorsal. In particular to facilitate the movement it is best
to flex the shoulder with the deltoid and then contract the dorsal. This
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7.3 Actuation of Basic Arm Movements

increments the torque that the dorsal actuator can apply on the shoulder
joint.

Figure 7.19: Abduction of the Arm

7.3.3 Shoulder Rotation

The shoulder rotation is possible thanks to the supraspinatus and the
subscapularis actuators. Since there is not enough space to connect the
actuators directly to the shoulder joint, the movement is transmitted by
a tendon that is fixed to the joint by a rotative screw.

Figure 7.20: The tendon that permits the Shoulder rotation

This device permits the tendon to rotate but not slide; the action of
these two muscles is independent from the action of the other shoulder’s
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7 Experimentation on the Arm Prototype

actuators.

Figure 7.21: Shoulder Rotation

7.4 Preliminary Experimental Results

After having verified the movement capability of our arm, I started a
series of experiments with the aim of testing:

e 3 single joint motion
e the effect of an external force on the joint’s position
e the effect of the actuators force on the joint stiffness

In this phase of the arm experimentation I did not activate the con-
trol system, and only one joint was taken into consideration. The ex-
periments were conducted on the elbow joint, therefore only the biceps
and triceps actuators were involved the movement. Each actuator was
equipped with a force sensor applied at the extremity connected with
the upper arm, and with a length sensor applied at its external side. I
measured also the elbow position using a supplementary angular sensor.
In order to control the pressure inside the actuators I used four pro-
portional electro-valves, two of which were connected with a pneumatic
circuit. It was possible to control the pneumatic circuit pressure from
zero to 7 bars using a manual regulator. The joints and the actuators
velocity and acceleration were obtained by interpolating the position
data and applying a numerical derivation. Data have been recorded on
a personal PC for subsequent elaboration. The single experiment was
repeated 5 times and the final data have been obtained by averaging the
values recorded by the five experiments.
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7.4 Preliminary Experimental Results

7.4.1 Single joint Motion

In this experiment I flexed and extended the elbow’s joint and measured
the whole system’s variables. Data was sampled with a frequency of
0.1 KHz and processed directly by the target PC. In order to flex the
elbow the biceps and the triceps were co-activated. The co-activation was
needed in order to limit the joint velocity and to avoid over-elongations.
The pressure inside the two actuators was gradually incremented with
two different rates, in order to guarantee the predominance of the biceps
torque over that of the triceps.

Elbow Angular Position [°]

50 I I I I I I I I
0 2 4 6 8 10 12 14 16 18

Time [s]

Figure 7.22: The Elbow Angular Position during the flexion-extension

In figure 7.22 we can see the trend of the elbow position; in particular
the joint started from a position of 52° and is flexed as far as 88°. To ob-
tain the angular velocity I interpolated with a 10*" order polynomial the
data representing the positions and then I applied a numerical deriva-
tion. This gave me an approximation of the elbow’s velocity, whose trend
is shown in figure 7.23. As it is possible to see the velocity of the elbow
reaches a maximum value of 17°/s.

In picture 7.24 the biceps and triceps lengths during the elbow move-
ment are reported. I observe that the length variation is different for
the two artificial muscles, due to the fact that they are connected in a
different way to the forearm.
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Figure 7.23: The Elbow Angular Velocity during the flexion-extension
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Figure 7.24: Biceps Length

7.4.2 Effect on the joint position of a Noise Force

In this experiment I moved the elbow joint to a fixed position and subse-
quently I applied at the wrist a noise force. Before the force application
the pressure inside the two actuators was fixed at 4 bar, and the elbow
flexed at 91.5°. The force of 5N was applied two times with an interval
of one second between the first and the second application.

As we see the force alters the elbow joint position of about 8°. Between
the two peaks there is a difference of 1°, due to the fact that the force was
applied manually using a dynamometer. In the graphics of figure 7.26 are
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Figure 7.25: Effect on the Elbow position of a Noise force of 5N

reported the biceps and triceps forces measured with the correspondent
sensors. As it is possible to see at the beginning the two actuators force
are the same, because the actuators during the joint movement reached
an equilibrium. After the application of the noise force, the change in the
biceps and triceps forces are different, due to the fact that the McKibben
actuator presents a hysteresis and therefore the force generated when the
actuator decreases its length is different from the force generated when
it increases its length.

7.4.3 Effect of the Actuator Co-activation on Joint Stiffness

The concomitant variation in the force of both the agonistic actuators
can be used to change the joint stiffness. This permits to regulate the
stiffness of the arm’s joints during the execution of different tasks. In
particular increasing the joint’s stiffness makes the arm more immune to
disturbance forces. In order to demonstrate this I conducted an experi-
ment where was analyzed the effect of a noise force of 5N on the elbow
joint settled at two different rigidities.

As it is possible to see in figure 7.27, when the actuator pressures were
increased from 2 to 3Bar the same noise force altered less the elbow’s
position. This is due to the fact that the actuator forces were increased
(Figure 7.28) and with them the joint’s stiffness. This strategy is used
also in the human limb [96], [49], [97] when it is required to catch an
heavy object; in order to compensate the kinetic energy of the object
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Figure 7.26: Biceps and Triceps Forces

85

B0 =

75

~
=)
T

- o

Elbow Angular Position
o
o
T

60

55

Figure 7.27: Effect of the same noise force (5N) on two different stiffness
values

the articulations should change their viscose-elastic characteristic. This
is possible by changing the relationship between the muscle’s force and
length during a isometric contraction (muscle length constant).
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Figure 7.28: Reaction Force in the Biceps actuator during the application
of a Noise Force

7.4.4 Myotatic Reflex and Adaptation

In chapter five I have tested the behaviors of the reflex module in con-
trolling the arm model. It was shown that the neural circuit is suitable
to regulate the joint’s position and to compensate external noise forces.
In the reflex module artificial motoneurons set the pressure inside the ac-
tuators connected with the joint. This allows to regulate the forces and
therefore the torque and the stiffness of the joint. I have also noted the
importance of the Ia-interneuron in regulate the activity of the antag-
onistic motoneuron. Thanks to this cross inhibition when an actuator
increases its contraction, due to its length error, the antagonist is re-
leased. This behavior allows to save energy during the joint movement
and at the same time maintains the joint stiffness under control.

I have done the same testing also on the arm prototype. In this exper-
iment, again, I considered only the elbow joint and therefore the action
of the biceps and triceps actuators. As a reference position for the elbow
I chose a square function with a period of one second. The signals were
sampled every 0.04s and recorded on the Host Pc. We can see the testing
results in figure 7.29.

In this experiment the synapses that Ia-interneurons form with the
biceps and triceps motoneurons are adaptable. The rule that describes
their dynamical behavior was presented in chapter three. The more the
synapse is excited the more it increases its efficiency, this in accordance
with the Hebbian learning role. In figure 7.30 are reported the weights
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Figure 7.29: Testing of the Reflex Module (Myotatic Reflex)

for the two cross inhibitions. The two weights are initially set to the
minimum value, this means that during the first elbow flexion there are
not cross inhibition.

0.9

0.8

0.7

0.6

c
8
5 05+
Z
£
2
8 o4t
(8}
031 = Whbiceps
— Wiriceps
0.2 4
0.1 T
0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Time [s]

Figure 7.30: Cross inhibition weights in the Elbow Reflex Module
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7.4 Preliminary Experimental Results

As is possible see in figure 7.30 the two weights reach a stable value
after four second. In particular the weight which correspond to the
synapse between the biceps Ia-interneuron and the triceps motoneuron
reaches a value of 0.8, and the weight of the antagonist counterpart a
value of 0.55. These values correspond to the "optimal" control strategy,
indeed if we look to the elbow position, after four seconds it follow the
reference position quite well. From the graph of picture 7.29 it is possible
to note the effect of the cross inhibition, indeed when the elbow is flexing
the biceps increases its force and this inhibits the triceps activity and so
its force.
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Figure 7.31: Position Error of the Elbow

In figure 7.31is reported the elbow position error. As it is possible see

during the first elbow flexion the average error assumes its maximum
value.
During the simulations described in chapter five, I demonstrated that
the reflex module can compensate for disturbance forces. A similar ex-
periment was done also on the real system. At first the elbow was flexed
at 60° (figure7.32), then at the third second a force of 30N was applied
at the wrist in order to increase the elbow flexion. As is possible see in
the graph, due to the disturbance force, the elbow changes its position,
but at the same time also the triceps and biceps forces change. In par-
ticular, to compensate the noise force and extend the elbow, the triceps
force increased and the biceps force decreased. We can compare these
results with those of figure 7.25, as is possible see without reflex control
the elbow position depends strongly on the noise force.
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Figure 7.32: Noise Force compensation

In figure 7.33 is reported the trend for the error position in the elbow.
As it is possible see, at first there is a big peak due to the fact that the
elbow initially is complete extended and it is necessary a certain time
to reach the reference position (60°). After three second the noise force
is applied and the position error increases again until it reaches 10°, at
this point the reflex control compensates the noise force and annuls the
error. We can also observe that when the noise force is removed there is a
negative peak in the position error, this is due to the fact that the reflex
control needs a certain time to decrease the triceps force and increase
the biceps force. An additional delay in the control loop is due to the
fact that the artificial-muscle pressures are regulated by electro-valves
that have their own dynamic.

In the last experiment I verified the ability of the reflex control in
regulating the elbow stiffness. As underlined before, the capacity to
regulate the joint stiffness during the arm operation is crucial in order to
execute certain tasks. This is particular true when the robot is expected
to collaborate with a human being. In this experiment the elbow was
flexed at the angular position of 60°, but the activity of the biceps and
triceps motoneuron were reduced. In figure 7.34 we can see that the
reference position was reached again, but the biceps and triceps forces
were reduced (in comparison with picture 7.32). This action permits to
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Figure 7.33: Position Error of the Elbow due to the noise force

reduce the elbow stiffness from 3% to 1.5%, indeed when the noise

force was applied, this time the elbow had a bigger position variation
(figure 7.35).
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Figure 7.34: Stiffness regulation
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Figure 7.35: Position Error of the Elbow at lower stiffness
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8 Conclusion

8.1 Thesis Summary

The main aim of this work was the development of a human-like artificial
arm for application in the field of humanoid robotics. Because mimicking
the human arm from the mechanical and functional point of view was
one of my principal research aims, I conducted an intensive study of the
natural limb. Not only did I analyze its physiological characteristics, but
because interested in emulating also the strategy of control, I studied the
human central nervous system with particular attention to the spinal and
cerebellar neural circuits. After this study I concentrated my attention
to the design and the implementation of a real human-like robotic arm,
and at the same time, to developing a possible control model based on
the actual knowledge that neurophysiologists have of the human nervous
System.

Our arm differs from other analogous systems [36], [7], [11], by the pres-
ence of a full 3DOF shoulder joint moved by five artificial muscles. Fur-
thermore, thanks to the employment of light materials, the system can
be integrated with a whole humanoid robot.

During the laboratory activity I was involved in solving many technical
and implementation problems. This required me to face the design of
new sensors and actuators, and the development of dedicated electronic
hardware. In order to experiment with the control architecture and com-
pare its behavior with the human being, I developed also a kinematic and
dynamic model of our arm prototype, and used it to conduct different
simulations. In particular I concentrated my work on testing a realistic
artificial spinal circuit, that showed the capacity to replicate the human
myotatic and inverse myotatic reflexes. Furthermore my experiments
showed how it is possible apply a bio-inspired control architecture also
to an artificial system like our robotic arm. I tested the reflex controller
on the elbow joint of our robot and verified its ability to regulate the
position also in presence of external noise forces.

During the simulations the control system presented behavior compa-
rable with those of the natural limb, like the tremor that appears in a
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8 Conclusion

human limb when there is a big isotonic co-contraction of the articula-
tion muscles.

I introduced also an innovative reflex controller able to operate on three
agonistic artificial muscles that is not based on a biological knowledge of
its counterpart, but only on an engineering speculation. Furthermore, I
posed a conjecture on a plausible structure for the natural circuit.
After testing the artificial reflexes, I integrated into the control archi-
tecture two other modules: the inverse kinematic module, based on a
standard multi layer perceptron neural network, and the path generator
module. The path generator module evidenced the behavior of generat-
ing desired arm movements by smoothly interpolating between a initial
and a final target length command for the artificial muscle.

Relative to the Kawamura et al. [36] approach in controlling the bio-
inspired arm, based on the studies conducted directly the muscle myo-
electric activity, I face the problem of reproducing the internal behavior
of the human spinal and cerebellar neural circuits. This permits me to
study a general model of the natural reflexes, that can be applied also
to control an artificial system like our robotic arm. Furthermore by the
simulated experiments I was able to better understand the behavior of
the natural limb.

Relative to the Hannaford et al. research [15], [19], [7] I expanded the
control architecture in order to operate a four degree of freedom arm
moved by seven artificial muscles. Furthermore I integrated it also with
an inverse kinematic module and a cerebellar module. The cerebellar
model, relative to the research of Grossberg-Bullock et al. [37], [38], [39],
[40] is expanded using a layer of 100 granule cells and a layer of 7 purk-
inje cell,in order to control the seven motoneurons activity during fast
movements.

Relative to more standard approaches [85], [98]in controlling the McK-
ibben actuated artificial arm, I showed that a bio-inspired controller has
comparable performance and its architecture can be applied to very com-
plex kinematic robotic systems, and therefore is suitable for humanoid
robotics. Nevertheless the control architecture is intrinsically parallel,
therefore in order to be competitive with standard control systems, needs
an hardware implementation. This in order to speed up the solving of
the differential equations that represents the natural cells dynamic.

8.2 Future Work

Future works will complete the model and the simulations of the cerebel-
lar module integrated within the whole control architecture. It remains
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8.2 Future Work

also to clarify its effectiveness in predicting the arm dynamic and im-
prove the fast reaching movements. Also the performances of the whole
system in following a predefined trajectory should be improved, maybe
considering a single reflex module in order to govern the shoulder joint.
The control architecture should be implemented and tested on the arm
prototype and the performances should be compared with the model pre-
dictions. In order to perform a reaching grasp it is necessary furnish the
arm with an anthropomorphic artificial hand (actually under develop-
ment) and a stereoscopic vision system. Indeed vision in humans holds
an important role in coordinating the arm movements and adjusting the
hand trajectory.

In real, the true hope and dream of the visionary author of this manuscript
is to work, in the future, on a full size intelligent humanoid robot, able
to help humans being in their everyday life and to contribute to the
humanity progress.
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