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Abstract

This paper presents a block oriented nonlinear dynamic model suitable for
online identification.The model has the well known Hammerstein architec-
ture where as a novelty the nonlinear static part is represented by a B-spline
neural network (BSNN), and the linear static one is formalized by an auto
regressive exogenous model (ARX). The model is suitable as a feed-forward
control module in combination with a classical feedback controller to reg-
ulate velocity and position of pneumatic and hydraulic actuation systems
which present non stationary nonlinear dynamics. The adaptation of both
the linear and nonlinear parts is taking place simultaneously on a patter-
by-patter basis by applying a combination of error-driven learning rules and
the recursive least squares method. This allows to decrease the amount of
computation needed to identify the model’s parameters and therefore makes
the technique suitable for real time applications. The model was tested with
a silver box benchmark and results show that the parameters are converg-
ing to a stable value after 1500 samples, equivalent to 7.5s of running time.
The comparison with a pure ARX and BSNN model indicates a substantial
improvement in terms of the RMS error, while the comparison with alter-
native non linear dynamic models like the NNOE and NNARX, having the
same number of parameters but greater computational complexity, shows
comparable performances.
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Real-time Model Adaptation, Adaptive Control, Humanoid Robotics,
Hydraulic Actuation Systems.

1. Introduction

When it comes to design the control system of highly redundant robots
(e.g. humanoid robots, legged robots, continuum robots, etc.) it is crucial to
have available an accurate model of their actuation system. The model can
be used indirectly to find out the controller’s parameters or it can be directly
integrated into the control scheme in order to compensate for the dynamics
and the nonlinearities of the system [1, 2]. Especially in this second situation
having an accurate model, that can be kept updated while the operation of
the robot, represents an important mechanism to avoid the degradation of
the robot performances during time.

Hydraulic and pneumatic actuation systems are suitable for humanoid
robotic applications due to their high power to weight ratio [3]. In compar-
ison with electrical motor, they have the advantage of an higher power-to-
weight ratio, a faster dynamics, and the possibility to be used in direct-drive
mode. Nevertheless, they also present a nonlinear time-variant dynamic be-
havior that needs to be taken into account when designing the control system.
Among the nonlinear phenomena that a↵ect the hydraulic and pneumatic
systems we have the saturation and the dead-band in the servo-valves [4, 5],
the backlash and the friction of the actuator seal [6], the oil viscosity and
flow characteristic through orifices and pipes.

Furthermore, deterioration of the mechanical parts (e.g. actuator seal-
ing), change in the fluid temperature and viscosity, di↵erent load condi-
tions,etc., demand for model-based control strategies that are capable to
adapt to changes happening in the system.

Although most of the actuator’s parameters necessary to formalize its
mathematical model can be obtained from the product’s data-sheet, in many
cases it is necessary to identify them via ad-hoc and time-consuming exper-
iments [7]. Moreover, it is often necessary to separate the subcomponents of
the actuator (e.g. the electro-valve’s solenoid/motor, its spool; the actuator’s
vane, its output shaft etc.) to access and measure the required variables.

A di↵erent way to represent the actuator is to consider it as a “black
box“ and use exclusively the input and output signals to identify its model
[8]. This avoids to explicitly formalize the electromechanical characteristic
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of the device and allows to easily integrate adaptation mechanisms in order
to keep the model coherent with changes that may happen in the physical
system [9].

The Wiener and the Hammerstein architectures represent an important
class of block-oriented models that attracted particular attention in the con-
trol systems community [10, 11, 12, 13, 14]. This mainly due their structural
simplicity and their suitability to represent a wide range of nonlinear dynamic
systems. In the Hammerstein scheme (Fig. 1), the nonlinear static part is
followed by the linear dynamic one, while in the Wiener scheme the two are
inverted. In comparison with Hammerstein, the Wiener configuration brings
more di�culties during the identification process. This is mainly due to the
fact that the identification of the linear part depends on the estimation error
of the the nonlinear parametric expression. However, if the nonlinear block
is invertible, it is always possible to calculate the intermediate variable n(t)
and use it to identify the static part.

Linear Dynamic
 System

Figure 1: Hammerstein Scheme.

The model presented in this paper is based on the Hammerstein scheme.
Although it is mainly intended to improve the control system of hydraulic
and pneumatic actuation systems, it can also be applied to a wide range
of applications where nonlinear dynamic systems need to be modeled and
controlled. As novelty, the nonlinear memoryless part is based on a B-Spline
Neural Network (BSNN) that encompasses a computationally low-expensive
adaptation rule. The dynamic part is instead based on a classical Auto-
Regressive eXogenous system (ARX) and it is identified using a Recursive
Least Square algorithm (RLS).

Although b-spline functions were investigated as early as the nineteenth
century, BSNNs attracted only recently the scientific community. They can
be used as approximators of nonlinear continuous function [15] and applied
for parameters identification and control of non linear actuation systems.
In [16] and [17] a BSNN was used to estimated the nonlinear flux linkage
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characteristic and the electromotive force of a switched reluctance motor by
using position and current measurements as inputs. In [18] the flux linkage
model identified by the BSNN was instead used to find the optimal design
parameters of the same motor kind. A BSNN model was adopted in [19] to
predict the torque and the speed of a permanent magnet synchronous motor
and it was integrated with a PI controller in order to improve the transient
response of the rotor speed. To estimate the nonlinear dynamics of a voice
coil motor a BSNN was used in [20] coupled with a position controller, while
in [21] the BSNN was trained online to minimize the current tracking error
of a linear motor that actuate a reciprocating vapor compressor.

As an alternative to BSNNs classical Feed Forward Neural Networks
(FFNN) based on the multilayer perceptron model can be used to iden-
tify the non linearities of a dynamic system. In [22] a FFNN was used to
estimated the displacement of a hydraulic cylinder from pressure and flow
rate measurements, while in [23] the displacement of a pneumatic piston was
computed by the neural network from a tapped delay version of the voltage
signal provided to the servo-valve connected to the actuator.

Once the input-output signals and the architecture of the BSNN or FFNN
are defined di↵erent learning strategies and algorithms can be used to tune
their parameters. In [16] and [21] the Least Mean Squares algorithm (LMS)
was used to train the network with a computational complexity of O(N2) (N
here represents the number of adapting parameter). In [18] the adaptation of
the neural network’s weights was based on the Levenberg-Marquardt (LM)
algorithm which has even higher computational complexity, i.e. O(N3). In
[20] to speed up the convergence of the tracking error a proportional-integral
adaptation rule was adopted, while in [19] an e�cient instantaneous local
learning rule was used instead . Alternatively, in the case of applications that
do not require to identify the model online, it is possible to use a classical
batch back-propagation algorithm as was done in [22].

To tune the weights of the BSNN we propose a local instantaneous learn-
ing rule as in [19]. However, to avoid that the weights diverge and cause the
system instability we also integrated a saturation mechanism. In compari-
son with the adaptation algorithms used in [16, 21, 18, 23] the algorithm we
implemented presents a reduced computational complexity of O(N). This,
make it more suitable for online applications and in all the situations where
the on-board computational power is limited. Furthermore, compared with
the batch learning algorithm used in [22], which requires to use the entire
input-output dataset di↵erent times (epochs) to guarantee the convergence

4



of the FFNN weights, the algorithm we implemented starts to adjust the
BSNN weights from the first input-output sample available. By doing so it
possible to design model based control systems that can steadily improve
their performances from the moment they start to operate.

In [16, 22] the authors used a static nonlinear model to predict dynamic
quantities. This, is possible by providing the BSNN with an input that is
representative of the system state, i.e. the rotor angular position and the
motor’s current. The main drawback of this approach is represented by the
fact that it is necessary to measure not only the position of the rotor, but also
the absorbed current. The BSNN-ARX model we propose on the contrary is
able to represent also the dynamic component of the system and therefore it
is more general than a pure BSNN.

The rest of this document is organized as follow: Section 2 describes in
detail the main blocks of the proposed BSNN-ARX model and indicates the
necessary conditions to guarantee the convergence of the adaptation algo-
rithm. Section 3 presents the model implementation and the experimental
setup. Section 4 compares the performances of the combined BSNN-ARX
architecture with the standalone ARX and BSNN models. Furthermore, it
considers for comparison other two nonlinear dynamic models based on neu-
ral networks, the NNARX and the NNOE architectures. Finally, Section 5
draws the conclusions and gives indications about possible future research
directions.

2. The B-spline Neural Network ARX Model

The two main blocks that compose the BSNN-ARX model are described
in detail in the two following sections.

2.1. The linear dynamic part

The linear dynamic part of the Hammerstein model proposed in this
work is represented by an ARX system (see Eq. 1), where n(t) and y(t)
are the input and the output of the system respectively, B and A are two
polynomials in z�1 of degree m and n respectively which expressions are:
B(z�1) = b

m

z�m+b
m�1z(�m+1)+ ..+b1z�1 and A(z�1) = a

n

z�n+a
n�1zn�1+

...+a1z�1+1, where [b1, .., bm]T 2 Rm and [a1, .., an]T 2 Rn. We assume that
the system is realizable, this traduces in the condition m  n, thus the
transfer function has a number of poles equal or bigger to the number of
zeros.
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y(t) =
B(z�1)

A(z�1)
n(t) (1)

It is worth to mention here that an ARX model is not as general as an
ARMAX or a state space model [24] e.g. expressed by Eq.2, where x 2 Rn,
y 2 Rp, u 2 Rm, A 2 Rn⇥n, B 2 Rn⇥m, C 2 Rp⇥n).

(
x(k + 1) = Ax(k) + B u(k)

y(k) = C x(k)
(2)

Whereas an ARMAX and the state space model are equivalent, i.e. it is
always possible to rewrite an ARMAX model into a state space form [25, 26],
and vice-versa it is always possible, using the Cayley-Hamilton theorem, to
eliminate the states from Eq. 2 and reach the ARMAX form; compared to
an ARMAX the ARX model is not able to catch properly the noise dynamics
present in the process, and therefore its performances degrades in case of a
poor signal to noise ratio. However, a loss in generality can be justified by the
fact that the structure of the parameters space of an ARX model is simpler if
compared with that one of the ARMAX or a space-state model, and therefore
more suitable for parameters identification methods [27] like the Recursive
less Squares (RLS) algorithm. This is a very important especially if the
algorithm has to be executed meanwhile the process is running.

To identify the ARX model a RLS algorithm is used, that is detailed
described among others in [28]. Eq. 1 can be written, after elementary
passages, as Eq. 3.

y(t) = �a1y(t� 1)� ...� a
n

y(t� n) + b1n(t� 1) + ...+ b
m

n(t�m) (3)

The estimated parameters are defined by the vector ✓̂(t�1)T = [â(t�1)T , b̂(t�
1)T ] where â(t � 1)T = [â1(t � 1), ..., â

n

(t � 1)] , and b̂(t � 1)T = [b̂1(t �
1), ..., b̂

m

(t� 1)]. Considering the regressor vector �(t� 1)T written as in Eq.
4 it is possible to rewrite Eq. 3 in a compact form at the time t + 1 as a
priori prediction (superscript index �o) by Eq. 5 .

�(t� 1)T = [�y(t� 1), ...,�y(t� n), n(t� 1), ..., n(t�m)] (4)

ŷo(t+ 1) = ✓̂(t)T�(t) (5)
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Assuming to know at each instant t+1 the value of the process output y(t+1)
it is possible to calculate the (a priori) prediction error "o(t+1) using Eq. 6

"o(t+ 1) = y(t+ 1)� ŷo(t+ 1) (6)

At this point the adaptation can be computed as Eq. 7,

✓̂(t+ 1) = ✓̂(t) + F (t+ 1)�(t)"o(t+ 1) (7)

where the adaptation gain is adapted according to Eq. 8.

F (t+ 1) = F (t)� F (t)�(t)�(t)TF (t)

1 + �(t)TF (t)�(t)
(8)

2.2. The nonlinear static part

The memoryless nonlinear part used in the BSNN-ARX model consists
of a B-spline neural network which adaptation mechanism is based on a
error-driven learning rule. To the best of the author knowledge none of the
Hammerstein models presented so far in the literature use such an adapta-
tion paradigm. Most of the authors have considered as nonlinear static part
for the Hammerstein model a polynomial of finite and know order [10]. Oth-
ers have used fuzzy systems [12], neural networks [14], or piecewise linear
functions [11]. Although B-spline were already used in [29] where the input
variable of a process is transformed via a B-spline basis matrix and feed in a
linear state-space model, and in [30, 31] where a single layer B-spline neural
network is combined with an ARX model and together identified using a least
square method; none of them consider to separate the identification of the
static part from the dynamic one. The novelty of our approach consists in
combining a classical RLS algorithm, to identify the parameters of the ARX
model, with a local instantaneous learning mechanism to adapt the BSNN.
This brings advantages in terms of a reduced computational complexity (see
Section 3.2) and therefore an improved real-time adaptation capability.

BSNNs belong to the class of single layer Feed Forward Neural Networks
(FFNN) and similarly to a Support Vector Machine (SVN) [32] can be used
to define a mapping from an input u(t) to an output n(t) (Fig. 2) by using
B-splines as activation functions. As a classical FFNN the signal propa-
gates from the input toward the output without loops. However, as main
di↵erence, not the inputs of the neurons, but their outputs are weighted and
superimposed to generate the outcome signal n(t).
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(t)

Figure 2: Architecture of a single input single output BSNN.

The B-spline activation functions are piecewise polynomials that, if com-
pared with pure polynomials, have the advantages to better fit hard non-
linearities. This is possible thanks to their intrinsic local nature. Given a
defined range [umin umax] for the input signal u(t), at first it is necessary
to define an ordered set of knot points K = {k1, k2, ..., kp} where k

i

2 R
and umin = k1 < k2 < ... < k

p

= umax. These can be either equally dis-
tributed along the input signal range or located with higher frequency where
the output signal n(t) = f [u(t)] presents its highest non linearities.

In the developed model p equally distributed knot points and quadratic B-
spline as activation function were considered. Each neuron N

i

in the network
is modeled by Eq. 9, where k

i

2 K� {k
p�2, kp�1, kp}, �k = (umax�umin)/p.

N
i

(u) =

8
>>>><

>>>>:

(u�ki)2

2(�k)2 k
i

 u < k
i

+�k
(u�ki)(ki+2�k�u)

2(�k)2 + (ki+3�k�u)(u�ki+�k)
2(�k)2 k

i

+�k  u < k
i

+ 2�k
(ki+3�k�u)2

2(�k)2 k
i

+ 2�k  u < k
i

+ 3�k

0 otherwise
(9)

The network output is calculated as Eq. 10, where the b represents a bias
and that is adapted according to the same rule used to adapt w

i

.

n(u) =
p�3X

i=1

(w
i

·N
i

(u)) + b (10)

The specific architecture of a BSNN has a big impacts on the adaptation
algorithm. Due to the fact that the nonlinearity is located before the synapses
it is not necessary to compute the derivative of the activation function. In
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particular the learning step, a modified version of the delta rule, is performed
on a patter-by-pattern basis according to Eq.11 and Eq. 12, where ⌘ is the
learning constant, and n and n are the target and actual output of the BSNN
respectively.

w
i

(t+ 1) = w
i

(t) +�w
i

(11)

�w
i

= ⌘ ·N
i

(u) · (n� n) · (1� |w
i

(t)|) (12)

How it possible to notice�w
i

not only depends on the prediction error and
the neuron’s output, but also on the term (1� |w

i

(t)|) that has the function
to limit the weight in the range (�1,+1) (i.e. a saturation mechanism).

The adaptation step can be computed for each single neuron separately,
this has the advantage that the computational resources can be delocalized
if required.

The described model can also be generalized to deal with multi inputs
dynamic systems u 2 Rq (i.e. MISO systems). In order to do that a possible
solution is to replicate q-times the architecture of Fig. 2 and superimpose
the output NN

j

of each single jth-BSNN (see Fig. 3 ). The output of the
neural network in this case can be computed using Eq.13, where n = p� 3.

(u)

Figure 3: Architecture of a multi-input single-output BSNN
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n(u) =
qX

j=1

(w2
j

·
nX

i=1

w1
i,j

·N
i,j

(u
j

)) (13)

Due to the fact that each input u
j

may have a di↵erent range of values, it is
necessary to compute the knot-point distance separately for each BSNN, i.e.
�k

j

= (umax

j

�umin

j

)/p. Also the adaptation mechanism needs to be revised;
the learning rule for the second layer in this case is expressed by equation 14

�w2
j

= ⌘2 ·NN
j

· (n� n) · (1� |w2
j

(t)|) (14)

where j = 1, 2, .., q. For the first layer, the adaptation mechanism is a bit
more complicated, at first it is necessary to back propagate the error signal
at each BSNN output, i.e. �

j

= w2
j

· (n � n), then it is possible to calculate
the adaptation step by Eq. 15, where i = 1, 2, ..., n and j = 1, 2, .., q.

�w1
i,j

= ⌘1,j ·Ni,j

(u
j

) · �
j

· (1� |w1
i,j

(t)|) (15)

2.3. Convergence of the BSNN Adaptation Algorithm

The BSNN-ARX model has the well know Hammerstein architecture. In
order to guarantee the convergence of the overall adaptation algorithm it is
necessary to demonstrate that the prediction error relative to the BSNN part
is decreasing over time, i.e. |e(t + 1) < |e(t)|. From Eq. 10 we can rewrite
the error in a matrix format as Eq. 16 where the adapting bias b is included
considering an additional b-spline which generates a fixed output 1 and by
adding a new synaptic weight.

e(t) = n(t)� n(u(t)) = y(t)�WT (t)N(u(t)) (16)

Representing the error as a Taylor series expansion stopped at the first
order we can rewrite e(t+ 1) as in Eq. 17.

e(t+ 1) = e(t) +
@e(t)

@WT (t)
�W(t) +H.O.T (17)

By calculating the partial derivative of Eq. 16 and representing the
weights update in Eq. 12 in a vector format we obtain

@e(t)

@WT (t)
= �NT (u), (18)
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�WT (t) = ⌘e(t)N(u)� (1� |WT (t)|), (19)

where the symbol � represents a component wise multiplication of two
column vectors, and | · | the component wise absolute value of a vector. By
substituting equations 18 and 19 in Eq. 17 we obtain

e(t+ 1) = e(t)(1� ⌘NT (u)N(u)� (1� |WT (t)|)). (20)

To ensure the convergence of the adaptation algorithm it should be veri-
fied that |1� ⌘NT (u)N(u)� (1� |WT (t)|)| < 1, this brings a constraint on
the learning constant ⌘ as

0 < ⌘ <
2

NT (u)(N(u)� (1� |WT (t)|) . (21)

We can find a conservative value for ⌘ by calculating the minimum of the
expression representing its upper bound limit (Eq. 21). By observing that
it is always verified that 0  (1� |WT (t|)  1 and 0  |N(u)|  1, we can
assure the convergence of the BSNN adaptation process if

0 < ⌘ <
2

n
, (22)

where n represents the number of splines used in the model.

3. Model Implementation and Experimental Setup

The combined BSNN-ARX model was implemented partially as matlab
code and partially as simulink code (see figure 4). In particular, the param-
eters initialization, the validation and the models comparison phases were
performed by matlab scripts, while the training phase was carried out by
Simulink simulations. On the one hand, Simulink’s GUI (Graphical User
Interface) brings the advantage to monitor and tune all the system param-
eter while executing the simulation. On the other hand, the matlab scripts
facilitate the implementation of di↵erent simulations in batch modality (e.g.
di↵erent instances of the BSNN-ARX model having di↵erent initial condi-
tions).
In the experimental setup the input-output pairs series {u

t

, y
t

}T
t=1, where

T represents the total number of samples, was generated with a Silverbox

11



model. The time series was then divided in two sets, i.e. the training set and
the validation set consisting of T

T

and T
V

samples respectively.

Silverbox
Model

Training Set 75%

Validation Set 25%

BSNN
Training

Algorithm

BSNN-ARX
Model

Si
m

ul
in

k 
   

Im
pl

em
en

ta
ti

on

Validation

M
at

la
b 

   
Im

pl
em

en
ta

ti
on

Models
Comparison

STM32F4
Target

ARX
RLS Training

Algorithm

ARX
RLS Training

Algorithm

Levenberg-
Marquardt
Algorithm

M

NNARX

NNOE

BSNN

ARX

Figure 4: Schema representing the experimental setup used for the BSNN-ARX model
training and validation. In gray color are reported the di↵erent models considered in the
comparison.

The training of the BSNN and ARX models were carried out simultane-
ously. However, while the BSNN training algorithm (see figure 4) receives
as input the complete input-output series {u

t

, y
t

}TT
t=1, the ARX RLS training
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algorithm receives only the output part {y
t

}TT
t=1 and uses instead as refer-

ence input the signal generated by the BSNN, i.e. {n
t

}TT
t=1. Furthermore, for

comparison purposes a second instance of the ARX model was included in
the simulink code which is trained with the same input-output pairs as the
overall BSNN-ARX model.

To allow evaluating the statistical significance of the model, M instances
of the BSNN-ARX (having each a di↵erent weights initialization) are sequen-
tially trained and their performances evaluated separately. Finally a com-
parison with alternative models is performed in terms of di↵erent statistical
quantities.

The schema represented in figure 4 includes also a branch which rep-
resents a possible practical implementation of the BSNN-ARX model and
its adaptation algorithm. A quite straightforward real-time realization can
be obtained by using additional Simulink packages that can be installed for
most of the commercially available rapid prototyping boards, e.g. STM32F4
Discovery board, Raspberry Pi 2 board, BeagleBone board, etc. Generally,
each package includes specific Simulink blocks to configure and access the de-
vice’s peripherals (Digital I/O, ADC, PWM, etc.) without requiring a deep
knowledge of the hardware.

3.1. The Silverbox Benchmark and the Model Parameters

As a benchmark to validate the model we used a Silverbox process fed
with filtered Gaussian noise. In particular, the second order di↵erential equa-
tion, Eq. 23, can be interpreted as a mass-spring-damper system where y(t)
represents the displacement of the massm, u(t) an exciting force, b the damp-
ing constant, and k1 and k2 the two elastic constants of the spring’s linear
and nonlinear components respectively.

mÿ(t) + bẏ(t) + k1y(t) + k2y
3(t)sin2y(t) = u(t) (23)

As an example of physical device behaving according to Eq. 23 we may
consider the actuation system of the robotic leg represented in figure 5, where
in this case the non linear element is represented by the spring connected in
parallel with the damper and the hydraulic actuator.
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Hydraulic
Actuator

Damper
+ Spring

m

Leg
Joint

Figure 5: Example of actuation system for a humanoid robot leg. The spring, the damper
and the hydraulic actuator are connected in parallel.

In our experimental setup the input signal u(t) consists of a filtered Gaus-
sian noise having a probability density distribution with standard deviation
�2 = 0.07 and mean value µ = 0.7. In particular, a first order low-pass filter
was used with a cut-o↵ frequency of 16Hz.

The implemented BSNN-ARX (see Fig. 6) consists of a single layer B-
spline neural network having 8 neurons connected in cascade with an ARX
model with dimension n = 3 and m = 3 (see section 2.1). The activation
function of each neuron is represented by a B-spline as in Eq. 9 having
parameters umin = 0 and umax = 0.8.

The weights and bias of the BSNN are initialized to uniformly distributed
random numbers within the range W 1

i,j

(t0), bi 2 [�0.25,+0.25], while the
learning constant �2 = 0.004.

The first 75% of the samples are used for adaptation while the last 25%
for validation. Overall the system runs for 10s with a sampling time of
0.005s and generates a total of 2000 input-output pairs. The adaptation
process takes place only one time. This brings considerable advantages com-
pared with other algorithms that can work only in batch modality. For these
algorithms the same input-output pairs set is presented to the network mul-
tiple times (epochs) making the process computationally expensive and not
suitable for online applications.

Although to speed up the adaptation process it is generally advisable to
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ARX Model  

B-Spline NN  

+-

Adaptation  

YM

Y

1

Figure 6: The BSNN-ARX model architecture.

remove the mean and to normalize the signal [33], this preprocessing here is
avoided in order to cope with a more realistic situation where the range of
the signal is not known a priori and the amount of computation available is
limited.

3.2. The parameters identification algorithm and its complexity

In order to identify the parameters of both BSNN and the ARX models a
combination of the algorithms described in Sections 2.1 and 2.2 is applied.
The overall BSNN-ARX model is depicted in Figure 6 and the exact sequence
of the adaption steps is resumed in the Algorithm 1.

The adaptation goes on for the entire training time, i.e. t  t
L

, after the
adaptation-module stops to operate and only the forward step of the model
is computed on the base of the last instance of the parameters (lines 12 and
13).

If the model needs to be adapted online it is crucial to estimate the
computational complexity of the adaptation phase; this in order to choose
a suitable hardware. In first approximation we can evaluate it counting the
number of multiplications required at each adaptation step both for the ARX
and BSNN part. If we consider that, with the most simple algorithm, mul-
tiplying two vectors of dimension N and multiplying a matrix and a vector
of dimensions N ⇥N and N requires N and N2 multiplications respectively,
the RLS algorithm with N parameters requires a total of 5 ·N2 + 3 ·N mul-
tiplications and therefore its complexity is O(N2). On the other hand the
adaptation step of a single input BSNN having N neurons requires 5 · N

15



Algorithm 1 The adaptation algorithm

1: Initialize the BSNN and ARX parameters: wk

i,j

(t0), ✓̂(t0), bi
2: t t0
3: while t  t

L

do
4: Compute the BSNN output Y

BSNN

using wk

i,j

(t)

5: Compute the ARX model output using ✓̂(t)
6: Calculate the model error: "o(t+ 1) = Y (t+ 1)� Y

M

(t+ 1)
7: Update the ARX parameters: ✓̂(t+ 1) = ✓̂(t) + F (t+ 1)�(t)"o(t+ 1)
8: Update weights and bias of the BSNN: wk

i,j

(t+ 1), b
i

9: t t+ 1
10: end while
11: while t  t

T

do
12: Compute the BSNN output Y

BSNN

using wk

i,j

(t
L

)

13: Compute the ARX model output using ✓̂(t
L

)
14: t t+ 1
15: end while

multiplications, therefore its complexity increases linearly with the number
of parameters, O(N). It is clear at this point that if we split the total number
of parameters of our model in N1 for the ARX part and N2 for the BSNN
part, a pure RLS adaptation algorithm would require a number of multiplica-
tions in the order of (N1+N2)2, while our combined algorithm (N1)2+N2.
This brings considerable advantages when the model is integrated within a
control loop that has strict time constraints, especially if it is implemented
on small computational units like a micro-controller or mini calculator (e.g.
STM32F4, Raspberry Pi 2).

4. Experimental Results

Before testing the combined BSNN-ARX model the single BSNN and
ARX models were tested separately with the same data set. The adaptation
of the BSNN’s weights can be observed in Figure 7, a similar trend can also be
observed for the adaption of the neurons’ threshold (bias). How it is possible
to notice from the topside plot of Fig. 7 the weights are converging toward
a stable value after 300samples (1.5s). At this point the signal predicted by
the BSNN is tracking the process output (bottom plot of Figure 7).

16



Figure 7: Weights adaptation of the BSNN.

The top side of Fig. 8 shows the process’s output (black line) and the
prediction performed by the BSNN model (red dashed line) on the validation
set. How it is possible to notice the signal generated by the BSNN overshoots
the reference signal and presents very narrow picks. This, is typical for a
memoryless model where only an algebraic relationship between input and
output can be established. The bottom side of Fig. 8 reports the residual at
each sample as the di↵erence between the process output and the prediction.

Figure 9 reports the output signal and the residual of the ARX model
when fed with the same input of the process. As it is possible to notice, in
comparison with the BSNN, the ARX model performs better. Although the
predictions overshot the reference, in this case the output signal presents a
smoother trend. Overall the error is still too high and the performances not
satisfactory. This is clear considering the fact that the dynamic model we
want to identify is nonlinear and therefore can not be properly represented
by a pure ARX model.

As a second step the overall BSNN-ARX was tested. As main di↵erence
now the ARX model does not receive, as input, the process input, but instead
the output generated by the BSNN (Fig. 4). While in this last case the adap-
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Figure 8: Performances on the validation set for the BSNN with a single layer of 8 neurons.

tation of the BSNN is not e↵ected by the new architecture, the adaptation
of the ARX model depends on the adaptation of the BSNN. This is clearly
visible from the plots of Fig. 10 where it is possible to notice that in the
second case (bottom graph) the adaptation of the vector ✓̂(t) requires more
time (1500 samples). The predictions of an exemplary BSNN-ARX model
on the test set are reported in Fig. 11. How it is possible to notice now
the combined model is predicting the target signal with higher accuracy if
compared with a pure BSNN or ARX model.

To increase the statistical significance of our results [34, 35] the adaptation
process of the BSNN-ARX, BSNN, and ARX models were repeated M = 100
times. In each simulation instance the weights of the BSNN and the ARX’s
parameters were reinitialized according to the procedure explained in section
3.1. Figure 12 reports the RMS error computed using the validation set for
each of the BSNN-ARX models, where the blue line represents the mean of
all the 100 values.

Comparing the three models in terms ofmean{RMSi}Mi=1 and var{RMSi}Mi=1,
calculated with the validation set, we can confirm the superiority of the
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Figure 9: Performances on the validation set for the ARX model having n=3 and m=3.

BSNN-ARX model. The value of the mean{RMSi}Mi=1 passes from 0.0479
for the BSNN model and 0.0174 for the ARX model to 0.0116 for the BSNN-
ARX model, while the var{RMSi}Mi=1 passes from 8.26e�8 for the BSNN
model and 1.91e�7 for the ARX model to 2.17e�6 for the BSNN-ARX model.

As last step the BSNN-ARX model was compared with other two predic-
tors having similar complexity, the NNOE and the NNARX architectures.
These models (see Fig. 15) consist of a FFNN having two or more layers of
neurons and as inputs the full regression vector �(t � 1)T as in equation 4.
However, if in the NNARX model the output of the real process composes
the regression vector in case of a NNOE model the output of the predictor
is feedback to the input layer to form the regression vector. To train the
NNOE and NNARX model the Levenberg-Marquardt algorithm was used
with a total of 10 iterations.

Figure 16 reports the predictions and the residual relative to an exem-
plary NNOE model having an input layer of dimension 6, a hidden layer of
dimension two, and an output layer of dimension one. In total the model has
14 adjustable parameters (synapses) as the BSNN-ARX model. The neurons
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Figure 10: Adaptation of the ARX model as stand alone (upper plot) and combined with
the BSNN model (bottom plot).

of the hidden layer have a sigmoidal activation function while the neurons
of the output layer present a linear activation function. As for the BSNN-
ARX model we computed the mean{RMSi}Mi=1 and var{RMSi}Mi=1 over 100
instances of the NNOE model obtaining the values 0.0133 and 6.02e�8 respec-
tively. In terms of mean{RMSi}Mi=1 the NNOE model performs worse than
the BSNN-ARX model (0.0133 vs. 0.0116), however it has a much smaller
variance (6.02e�8 vs. 2.17e�6). This can be explained by the fact that while
the adaptation process for the BSNN-ARX model is performed presenting
the training set only one time, the Levemberg-Marquardt algorithm requires
more iterations to train the NNOE model.

The predictions of an exemplary NNARX model are reported in Fig. 17.
Considering all the 100 instances in this case we obtained amean{RMSi}Mi=1 =
0.0137 and a var{RMSi}Mi=1 = 1.06e�7. Its performances are therefore sim-
ilar to that one of a NNOE model and slightly worse if compared, in terms
of RMS errors, with a BSNN-ARX model.

Figure 13 represents the three models in terms of RMS errors report-
ing for each model the median value together with the 25th and the 75th
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Figure 11: Performances using the validation set for the BSNNARX model.

percentile, the lower and upper adjacent and eventual outliers (calculated
over 100 instances for each model kind). While Fig. 14 reports the same
quantities calculated for the R2 value.

Table 1 finally shows the mean and the variance for the {RMSi}Mi=1 errors
and {R2

i }Mi=1 values, this for all the five models we considered (i.e. BSNN,
ARX, BSNN-ARX, NNARX and NNOE). Furthermore, all the quantities
are calculated for both the training and the validation sets. It is possible to
observe that for the first three models the performances on the validation
set are better than the one on the training set, while for the last two the
performances are comparable. This is due to the fact that for the BSNN,
ARX and BSNN-ARX models the adaption process is instantaneous and the
residuals are calculated during the adaptation, while for the NNARX and
NNOE models the adaptation process is of a batch kind and the residuals
are calculated only once the model is completely adapted.

Considering only the validation set it is possible to notice that we have
comparable performances for the BSNN-ARX and the NNARX and NSSIF
models. However, it is also crucial to consider the computational complex-
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Figure 12: RMS error reported for each of the 100 BSNN-ARX model instances.

Figure 13: Comparison of the three models by considering the RMS error relative to the
validation set. For each model is reported the median value together with the 25th and
the 75th percentile, the lower and upper adjacent and the eventual outliers
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Figure 14: Comparison of the three models by considering the R2 value relative to the
validation set. For each model is reported the median value together with the 25th and
the 75th percentile, the lower and upper adjacent and the eventual outliers
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Figure 15: The NNOE and NNARX model structures.

ity of the learning algorithms they use. If the complexity of the combined
algorithm used to train the BSNN-ARX model was calculated in section 3.2
as O(N2), the complexity of the the Levenberg-Marquardt (LM) algorithm,
used to train the NNARX and NSSIF models, is estimated in O(N3). Due
to the fact that it is necessary to compute the inverse of Hessian matrix at
each weight update, often the LM algorithm is used o↵-line in the batch
version. Online iterative implementations are still prohibitive especially for
models with a large number of parameters, even though recently there were
attempts to improve its computation [36] and to implement it by using ded-
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Figure 16: Performances using the validation set for the NNOE model.

Figure 17: Performances using the validation set for the NNARX model.
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Table 1: Comparison between the di↵erent models in terms of mean and variances of the
RMS and R2 values computed for all the 100 models instances. Data are reported for both
the training and validation sets, NS stands for non significant.

TRAINING-SET {RMSi}Mi=1 {R2
i }Mi=1

mean var mean var

BSNN 0.1150 2.40e-06 NS NS
ARX 0.0232 6.69e-06 0.8539 1.02e-03
BSNN-ARX 0.0233 7.49e-06 0.8526 1.09e-03
NNARX 0.0137 1.50e-07 0.9501 8.29e-06
NNOE 0.0133 9.07e-08 0.9528 4.68e-06
VALIDATION-SET {RMSi}Mi=1 {R2

i }Mi=1

mean var mean var

BSNN 0.0479 8.26e-08 0.1768 9.78e-05
ARX 0.0174 1.91e-07 0.8910 3.01e-05
BSNN-ARX 0.0116 2.17e-06 0.9513 1.48e-04
NNARX 0.0137 1.06e-07 0.9326 1.05e-05
NNOE 0.0133 6.02e-08 0.9360 5.65e-06

icated hardware [37].

5. Conclusions

A new Hammerstein architecture that combines a B-spline neural network
and an ARX model suitable for nonlinear dynamic models identification is
presented. The BSNN-ARX model is intended to be integrated in a feedback
control scheme to compensate the nonlinear and time variant dynamic be-
havior of hydraulic and pneumatic actuation systems suitable for humanoid
robotic applications. The learning process of the nonlinear static part and
the linear dynamic one is taking place simultaneously based on a error-driven
learning rule and the recursive least square algorithm respectively. The B-
spline neural network consists of a single layer of neural units represented by
a quadratic B-spline which outputs are linearly combined by a set of adaptive
synapses. Its architecture can be easily generalized to identify multi-input
dynamic systems by replicating the BSNN structure and introducing a two
steps adaptation rule.
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The implemented BSNN, in comparison with a classical FFNN adapted
using conventional training techniques (e.g. back propagation, LM, LS, RLS)
[38], is able to identify nonlinear mappings much faster due to the local and
instantaneous nature of its weights adaptation mechanism.

The BSNN-ARX model was validated with a silver box benchmark ex-
cited with a filtered Gaussian noise. In comparison with a pure ARX or
BSNN model it performs better in terms of the RMS error, while the com-
parison with alternative nonlinear dynamic models based on neural networks,
i.e. the NNARX and NNOE architectures, shows similar performances. Fur-
thermore, its lower computational complexity, linear in the number of the
parameters for the memoryless part and quadratic for the dynamic part,
makes it more suitable for online implementations.

Future work have to be dedicated to validate the proposed model in a
real setup in order to demonstrate its e�cacy to identify online the model
of an hydraulic or pneumatic actuation system. It will be interesting to
test its capability to adapt and to compensate for changes happening in the
controlled system. In this context it will be necessary to implement a robust
mechanism to tune the learning constants that allow a fast adaptation when
the model is engaged for the first time and a slower one when it is required
only to track slow changes in the dynamic system.
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