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Abstract— This paper focuses on the study of a bio-inspired
neural controller used to govern a mobile robot. The network’s
architecture is based on the understanding that neurophysi-
ologists have obtained on the nervous system of some simple
animals, like arthropods or invertebrates. The neuronal model
mimics the behavior of the natural cells present in the animal,
and elaborates the continuous signals coming from the robot’s
sensors. The output generated by the controller, after scaling,
commands the wheel rotation and therefore the robot’s linear
and angular velocity. The mobile robot, thanks to the controller,
presents different behaviors, like reaching a sonorous source,
avoiding obstacles and finding the recharge stations. In the
network architecture different modules, charged of different
functionality, are regulated and coordinated using an inhibition
mechanism. In order to test the control strategy and the neural
architecture, we implemented the system in Matlab and finally in
hardware using a dedicated dual processor board equipped with
an ARM7TDMI micro-controller. Results show that the neural
controller can govern the robot efficiently with performances
comparable with those described about the animal.

Keywords: Biorobotics, Neural controller, Robot naviga-
tion.

I. INTRODUCTION

Service robotics today requires synthesizing robust auto-
matic systems able to cope with a complex and dynamic
environment. Even for simple behaviors, like autonomous
navigation and obstacle avoidance, the most advanced systems
sometime fail, especially in presence of noisy information.
However, if we look at nature, we can see that in very
”simple” animal, insects or invertebrates, the deambulation
behavior is always accomplished [1],[2].

Biorobotics, in this context, tries to give an answer to
these issues mimicking [3], in the machine, the behaviors
and the structure of living creatures. Studying the anatomy
and the physiology of the animal it is possible to understand
how nature has attempted to solve crucial functional issues.
Many scientists are focusing their attention on the part of the
animal’s nervous system that is involved in the sensorimotor
coordination. This part, considering the phylogenetic evolu-
tion of the living organism, is the simplest and oldest one [4].
From the functional point of view, it covers a primary role
because it permits the animal to perceive, explore and change
the environment where it lives. Because it is relatively simple
and accessible, we have a deeper understanding on how it
works in comparison with the higher nervous centers.

II. THE NEURAL CONTROLLER ARCHITECTURE

Many researchers have considered a bio-inspired control
system in order to control a robot [5], [6], [7], [8]. Sometimes
the animal not only inspires the control strategy for the
robot, but also its kinematics and functionalities. In our
point of view there are two possible goals for bio-robotics:
the first is to use the robotic system to test and validate the
models we have for the animals, the second is to use the
proposed models to design new kinds of robots. Reaching
both these goals at the same time is very difficult and at
times dangerous because a compromise is required. In this
work we are more focused on the second goal, with the
main idea to use the knowledge we have from the biological
studies of the animal to synthesize a ”better” robotic system.
Better, from the functionalities point of view, than a similar
system not based on biological knowledge.

The neural controller we implemented is based on the
early studies conducted by Braitenberg [9] twenty years ago
on very simple automata vehicles, and on the more recently
studies that Barbara Webb et al. [10],[8] carried out on a
robot cricket, whose principal behavior is to follow sonorous
sources.

Inspired by these studies we tried to implement new
paradigms that do not have any evidence in the biological
studies of the animal. Sometimes it is near impossible to
perform a complete comparison between our model and the
biological model, since we are more interested in the robotic
functionalities than in mimicking the animal. Nevertheless we
are convinced that studying the living organism gives us a big
opportunity to synthesize new kinds of ”intelligent” machines.
In the neural architecture we propose (Figure1) it is possible
to individuate two neuron layers: a sensory layer and a motor
layer. The sensory layer is composed by 7 neurons connected
with different sensors: contact sensors, sound sensors, energy
stations sensors, and an energy level sensor. The motor layer
is composed by two neurons whose outputs, opportunely
scaled, control the velocity of the two robot’s wheels. The
synapses of each neuron can be excitatory or inhibitory, so to
regulate the activation level and therefore the neuron output.
In the network we can also distinguish four principal parts that
are assigned to four different behaviors: collision avoidance,
reaching the sound emitter, reaching the recharge platforms,



energy level monitoring. In the next four paragraphs we will
enter in detail in each of these single parts.

Fig. 1. The Neural Controller Architecture

A. Collisions Avoidance

This behavior involves the action of neurons SN1, SN6,
MN1, and MN2 (Figure 1 ). In particular SN1 and SN2 have
only an excitatory input that receives the signal directly from
the sensors. The output of SN1 excites the motoneuron MN1
and inhibits the motoneuron MN2, making the robot to turn
left when the right contact sensor (Contact R) is activated by
the collision with an obstacle. The output of SN6 excites the
motoneuron MN1, and permits the robot to turn right when
an object is revealed by the left contact sensor. As in the
schema, there is an asymmetry in the cross inhibition; this
is necessary in order to force a left turning when an object
is encountered exactly in front of the robot. Depending on
the synapses value, the robot turn with less or more strength
when it encounters the obstacle.

B. Reaching the Sound Emitter

The principal goal of our robot is to reach a sound source,
mimicking the behavior of the cricket female in tracking
the male position. This behavior is possible thanks to the
neurons SN3, SN4, MN1, MN2. As we see from the schema
(Figure1), SN3 realizes an inhibitory synapse with MN1 and
an excitatory synapse with MN2, so the robot turns right if
it receives n the right ear (EAR R) a signal stronger than
the one received by the left ear (EAR L). The other two
connections (SN4-MN1 and SN4-MN2) of this sub-network
are completely symmetric, and permit the robot to turn left
if the sound signal perceived by the left ear is stronger than
that of the right ear.
In this network the symmetry in the direct inhibitions works

because we want to reach the source, not to avoid it.
In reality it is possible to use this kind of architecture to
develop other kinds of behaviors if we use also other kinds
of sensors.

C. Recharge Platforms Reaching

The Recharge Platforms Reaching behavior, with the En-
ergy Level Monitoring, is critical for the robot ”life”, to guar-
antee energy for some activity. The corresponding behavior
in the animal behaviors is searching for food, that the animal
can perceive using olfactory or chemical receptors.
The sub-network involved in this task is that one constituted
by neurons: SN2, SN5, MN1, MN2. The architecture is
similar to that one which permits the Sound Emitter Reach-
ing behavior, but now only the energy-stations sensors are
involved.

D. Energy Level Monitoring

This sub-network, located in the bottom part of figure 1,
has a key role in the control system. It permits to regulate the
priority of the concurrent behaviors: Sound Emitter Reaching
and Recharge Platforms Reaching. They are concurrent be-
cause it is not possible to follow two different targets at the
same time .
The neural circuit contains two different parts: one constituted
by neurons SN7, MN1 and MN2, and the other by IN1 and
IN2. Both these circuits receive as input the signal coming
from the sensor that measures the available energy. When the
energy level goes below a fixed threshold, a signal reaches
both the excitatory synapse of neuron IN1 and the inhibitory
synapse of the neuron IN2. Because of this, the neuron
IN1 increases its membrane activity and IN2 decreases it.
Their outputs go directly to influence the synapses values of
neurons SN2, SN3, SN4 and SN5. When IN1 is activated, and
therefore IN2 results deactivated, the Sound Emitter Reaching
behavior is suppressed and the Recharge Platforms Reaching
behavior takes control of the motoneurons. Note that this
mechanism doesn’t control the Obstacles Avoiding behavior,
because it needs to be active also during the energy stations
tracking.
When the robot needs energy it is attracted by the energy
stations, the more the energy level is low the more the
Recharge Platforms Reaching behavior takes control of the
robot. When the robot reaches a recharge station, the changing
level of energy is perceived by the neuron SN7 that becomes
active and rises its output. This causes the motoneurons
inhibition and therefore the robot remains motionless until
the recharge is complete.

III. THE NEURONS MODEL

Each neuron in the neural controller is modelled using
equations 1, where P is the membrane potential and Y
the neuron’s output. The potential changes depend on the
excitatory inputs ��� and on the inhibitory inputs ��� , weighted
by �	�
� and ���� respectively. The term ��� performs a
forgetting mechanism, regulated by the forgetting constant � .



This permits the neuron to avoid the saturation, and therefore
to adapt to different stimulation patterns [11].�	��������� ��� �	�
���������� �!��� ����"���#�$���% �'&)(+*�-, (1)

In this neuron model the activation function is a piecewise
linear function (Equation 2), that bounds the output in the
range 0 - 1, and at the same time keeps the system linear.
Usually, in many neural networks architectures[12], a non
linear activation function is introduced to improve the perfor-
mance of the network in approximating non linear functions.
But here what is important is to avoid the neuron saturation
and therefore the network instability.
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In figure 2 we can see the potential and the output of
the neuron when stimulated with one excitatory and two
inhibitory signals.
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Fig. 2. The neuron signals.

A. Variable Synapse

Describing the network architecture, in paragraph II-D, we
indicated the capability of IN1 and IN2 to change the input
synapse value of the neurons SN2, SN3, SN4 and SN5. This
is possible modelling the synapse with a first order differential
equation (Eq.3 ). �=��?>@�<�?AB�$�DC�E�'&)(+*F�?>G, (3)

where �?> is the synapse internal state, �HA is the tuning
signal coming from the neuron IDJK� , LMC a term that allows the
depolarizing mechanism, necessary to decrease the synapse
value when the tuning signal is low, and finally &)( is the
function described in equation 2. In figure 3 we see that, when
the signal �?A decreases to zero also the weight decreases,
and therefore the excitatory input of the neuron doesn’t have
influence on its potential.

This inhibition mechanism is very important to regulate
and coordinate the robot behaviors. What is interesting here,
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Fig. 3. The weight tuning mechanism.

is the possibility to modulate the behaviors in a continuous
way, this means that it is possible to switch from a behavior
to another with a smooth trend.

IV. THE ROBOT MODEL

In order to test our controller we developed a virtual world
where the robot can move and interact with objects.
The arena (10x10 meters, see figure 4) contains obstacles
represented by circles of different diameters, a sound source
(the target position for the robot) and two recharge platforms.
The mobile robot (0.6x0.4 meters) has two wheels in a
differential drive configuration; controlling independently the
velocity of the left and right wheels the robot can move
forward, backward, turn left or turn right. The robot direct
kinematic can be solved using the system of equations 4 :
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where *���*�NO,Gh d *�NO,O, is the robot position, `a*�NO, its orientation
and TVU , TYX the linear velocities of the left and right wheel
respectively, obtained directly from the wheel angular ve-
locities. All of these quantities are respective of an inertial
reference system. In this model we neglected the dynamics
of the robot, therefore we do not considered mass and inertia.
This simplification is plausible, especially if it is possible
assume that the robot is very light, nevertheless future models
may also include this aspect.
The robot is equipped with two sound sensors located at the
right and left side in front of the robot, two energy station
sensors located in the same positions, and two circular contact
sensors (see figure 4).

The intensity of the sound signals received by the sound
sensors is modelled by equation 5:

I]i�jcAkjk� l]jcCm��I"npoOq
XrAkj 9Ls�.WtL Q buW�Lwv"b Q (5)

The intensity of the sound received ( I"i�jcAkjk� l]jcC ) by the
sensors is directly proportional to the intensity of the sound
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Fig. 4. The robot equipped with sensors inside the Arena.

source ( I"npoOq
XrAkj ) and inversely proportional to a quadratic
polynomial of the source distance b . A similar equation can
be used also to represent the signal level received by the
recharge-station sensors.
The level of the signal generated by the contact sensor can
be model by equations 6.

� I]i�jcAkjk� l]jcC-��Ls�Gxuy
z=W�L Q xuy
z Qxuy
z{��|m}]~"Nc�p�]��
���c~"Nc�D���]�@�$�.�_�+~_y
�V�u�pbZ����~ (6)

Here xuy
z is the compression of the circular sensor when
it encounters the obstacle.

V. RESULTS IN SIMULATION

All the simulations were done using Matlab; for the
integration method of the differential equations we used the
Runge-Kutta algorithm with an integration step of 0.001s.
The first simulation we performed, was done to test the Sound
Emitter Reaching and the Obstacles Avoiding behaviors. As
mentioned before this two behaviors work together to govern
the robot movements. The robot moves from a Start(in the
figure is the star symbol) position to the position of the
sound source.

Fig. 5. Simulations of the Sound Emitter Reaching and the Obstacles
Avoiding behaviors with different values for the inhibitory synapses.

In figure 5 we see the paths followed by the robot with
three different values for the cross inhibition synapses (a 0.1,
b 0.5, c 0.6), located in the sub-network that performs the

Sound Emitter Reaching behavior. Increasing the values for
these two synapses makes the robot to narrow the curves. This
is useful to more precisely reach the target, however near the
sound source a strong inhibition (quite similar in both the
motoneurons) slows down the robot velocity.

Another experiment was for testing all the behaviors. Now
the robot has a limited amount of energy that doesn’t permit it
to directly reach the target (sound source). In this experiment
we located two recharge platforms at the two side of the
upper part of the arena. As we see in figure 6 the robot,
at the beginning, performs a trajectory quite similar to that
one obtained without considering the Recharge Platforms
Reaching behavior; however, because now the robot has a
finite energy storage, it needs to refill.

Fig. 6. Simulation with all the behavior active (prospect view).

When the energy level is under a certain value the Recharge
Platforms Reaching behavior takes the control of the robot.
Now the robot is more attracted by the energy stations than
by the sound source. In the graphs of figure 7 we can see the
progress of the energy level and the distance travelled by the
robot.

After 137 seconds the energy reaches the bottom threshold
and the robot changes the direction of movement. At the 158th
second the recharge platform is attained and the robot stays
for 8 seconds in recharging; after it moves around the platform
for 7 seconds. This action is quite strange, it seems that the
controller enters in a condition of instability. The phenomenon
was interpreted considering that the station can supply a finite
level of energy. When the energy is terminated, the robot is
not anymore attracted by it and can go to the final target.

VI. HARDWARE IMPLEMENTATION OF THE NEURAL
CONTROLLER

In this section we illustrate a specific hardware implemen-
tation of the robot model and its benefits with respect to

folgheraiter
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Fig. 7. The distance covered by the Robot and its energy level.

other possible implementations. There are different method-
ologies and strategies to develop the architecture presented
in the previous paragraphs, for instance by using FPGA
(Field Programmable Gate Array) based boards, reconfig-
urable devices, etc., but all these solutions have been shown
in the robotic context to have disadvantages that make the
hardware implementations in some cases to be worse than
the software simulation. If we consider the FPGA-based
boards, for instance, we often have to face with severe
area and speed constraints, and the expressivity of hardware
description languages like VHDL is, in some cases, too much
limited for custom robotic applications, while we need more
flexibility and better performances. Furthermore, because
we are considering a mobile robot, we have to deal with
energetic issues, that should be taken into account in order to
minimize the number of recharges needed by the robot and
maximize the space covered; that is, in most cases, a trade-off
between board performances and board power consumption.
By observing the architecture of the neural controller and the
kind of computations involved (floating point multiplications,
mantissa shifting, sums and threshold comparisons due to the
logical activation functions) we focused on the possibility to
develop a very fast hardware implementation of the system by
exploiting a novel solution. We chosen a dedicated dual pro-
cessor board equipped with an ARM7TDMI micro-controller
for general purpose computation, and a floating-point VLIW
digital signal processor core for hard computations like FFT
(Fast Fourier Transform) and frequency domain phase-shift
algorithms. The Diopsis D740 board by Atmel satisfies our
needs, delivering 1 billion floating-point operations per sec-
ond (1 GFLOPS). The board is equipped with two serial ports,
two USARTS, an USB connection, a timer counter, watchdog,
parallel I/O port (PIO), peripheral data controller, 8 ADC
and 8 DAC (high quality, 24 bit precision) interfaces, clock

generator and interrupt controller. Only some features of this
board have been used to build the neural circuit (in a mobile
setting, we would have the lightest robot). After the control
architecture is encoded into a program, the system is able to
operate in a completely standalone mode, this in order to give
the robot a full autonomy.

Fig. 8. a) Some of the signals exploited in the first hardware implementation
b) Wave Forms of the signals.

We partitioned the tasks on the two board’s processors. The
job performed by the ARM processor, that constitutes the
vegetative system of the cricket, is very simple: it defines
the shared (between the two processors through a common
interchange bus) memory space, parameters and constants and
configures interrupts, timers and everything’s needed to take
advantage of the ADDA’s (ADCs+DACs) interfaces and of the
7-segment display. It is intended to pass the stimuli receipt
from the environment (for instance by the sensors located in
the moustaches and in the ears) and then acquire the stimuli
elaborated by the neural network in order to actuate the
movement for autonomous navigation. The neural controller
has been implemented through the DSP Processor: this means
that all the heavy floating point computations required by the
neural network and needed to obtain the new actuation signals
are performed by this parallel-dedicated processor. More
specifically, the DSP is really engaged managing all the audio
samples and converting them in a numerical form, the sample
time it operates is NS��9V�
�Z�a9 4Z4 ~ . In addition to the network
computations (computational time is in average ��� �Vz�~ ), the
whole audio elaboration (that represent the sensorial stimuli
from the surrounding environment) takes place inside this
processor.

The DSP effectively builds the neural network and its
relative interconnections, this is replicating the effective job
of each basic block with smart loops. The software running
on the DSP when invoked by the ARM processor is much
more complicated than ARM’s: it represents the real kernel
of the application. The exploitation of this kind of processor
permits us to gain true real time rendering. As we can see
in figure 8, thanks to a Win32 tool it is possible to supervise
the signals of the two processors, this is critical especially
for synchronization procedures between different tasks. We



can observe here an interesting similarity with the biological
activation and spikes signals in the biological neurons. This is
however not easy to see at first sight, also because most of the
signals are opportunely encoded to permit to the processors to
exchange all the data with a single transfer per time, reducing
the time required for data exchange. To implement the audio
management part of the bio-cricket, we used the analogical
to digital and viceversa interfaces (ADDA). It’s possible to
use only a single-input and single-output (exploiting a stereo-
channel solution) or alternatively a more complex (but closer
to the biologic configuration of a real cricket) solution using
separated channels for the two ears (using two mono-aural
microphones instead of one stereo), two outputs as actuation
channels for the engines (tension control) and other two ad-
ditional inputs as proximity sensors (the moustaches). About
the performances, there are techniques that permit to evaluate
at a glance where the application spends the major number
of cycles (e.g. profiling information), and so it is possible to
decide which routines must be optimized in order to speedup
the overall system. Furthermore, it’s possible to change the
assembler-linker code produced by the DSP code compiler
and implement optimizations by attempting to parallelize as
much of the overall architecture as possible. The great part
of optimizations can be done exploiting the 2-way parallel
architecture of DSP processor, because in our application all
operations are 2- way parallel due to the intrinsic charac-
teristic of the bio-cricket brain, sensor system and actuation
system (left and right for each sensor, neuron, actuation).
Making a comparison with the software implementation, we
obtained a speed-up of 100x with respect to the Matlab
software. By inserting the assembler-like optimizations and
simulating the same number of neural cycles (1000), the
results have shown a second speed-up of 2.5x. This fact
shows once again how dedicated hardware and optimized
software can perform better than traditional software-only
architectures. During this development of neural networks-
based applications, the DSP dedicated boards performed very
well, also for robotic applications. The application takes
advantages from the features that give the Atmel board a
higher place than other traditional architectures. Its single-
chip high-performance ARM RISC and dedicated S.O.C. 1
Gflops DSP VLIW processor with dual ported shared memory
architecture significantly decrease the computation time. The
24 bit ADDA interface brings highest precision in audio
elaboration and with 8 total in/out connectors offers many
possible sensorial choices for robotic applications.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a bio-inspired neural controller
for a mobile robot. The network architecture is organized
in two neurons layers: the sensory layer receives the output
signals coming from the robot sensors and feeds with excita-
tory and/or inhibitory connections the motoneurons, the motor
layer combine its input signals to govern the robot wheels.
Inside the architecture it is present also a sub-network, that
using information about the energy level, regulates the robot

behaviors. The regulation is based on an inhibition mechanism
that acts directly on the synapses of the sensory-motor layer.

From the first results obtained in a simulated environment
we have shown that the controller is able to govern the robot
in its primary task, that is following a sound source. We
changed the values for the inhibitory synapses that connect
the Ear sensory neuron to the motoneuron and evaluated the
robot performance.

Compared with other neural controllers [8] [10], we intro-
duced a more complex architecture able to perform different
kind of behaviors concurrently. This is possible thanks to an
inhibition mechanism that modulates the synaptic strength
of different sensory-neurons. Related to the subsumption
architecture [13], we developed a control system that is
more biomimetic, in the sense that the control layers here
are represented by different dynamical neural networks that
resemble parts of the neural circuits of the insects.

Experiments suggest us to consider and develop a mech-
anism to adjust the synapses in order to improve the robot
performances. The synapse optimization may be done for
example on the time needed by the robot to reach the target
and on the level of energy consumed to perform this task. Or
it is possible to think to use a learning paradigm [14], [15].

After the hardware implementation of the controller using
a DSP processor, we can conclude that the time needed to
actuate the robot using the neural architecture is absolutely
acceptable.

A more realistic scenario to test the robot may be developed
to contribute to the wide area of service robots.
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